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PROLOGUE

In the early stages of the research presented here, the only in-

tention of Zhe authors was to findananalytic expression for the volt-

ampere characteristics of spherical and cylindrical probes for suf-

ficiently general types of potential functions and to check our calcu-

lations for the Maxwell-Boltzmann distribution against the self-con-

sistent numerical calculations of Laframboise. In the course of this

I

I
I
I
I

I
investigation the classic works of Mott-Smith and Langmuir were sub-

jected to a critical analysis, in terms of the boundary conditions en-

countered in ionospheric experiments. This analysis revealed serious

defects in Langmuir's finite sheath model and put certain limitations

on their orbital-motion-limited theory. Furthermore, there seemed to

be no agreement among the existing theories as to the mathematical

definition of the "sheatH' which is the central part of any theory

describing the plasma-probe interactions. It was therefore felt that

it would be of general benefit to examine in some detail the basic physics

of the interaction between the probe and the surrounding plasma° The

first two chapters and the beginning of the third chapter of this report,

thus, are in the nature of a textbook discussion and should be read in

this spirit.

I

I
I
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Io INTRODUCTION

The collisionless theory of electrostatic probes immersed in a

plasma involves the two following basic physical concepts_

(a) The concept of a "sheath' surrounding the probe, in which

the potential change from that of the plasma to that of the

i
probe occurs, as propounded by Langmuir, and

(b) The existence of distinct velocity distributions of the

electrons and positive ions within the region of interest,

the sheath.

The sheath is fully described when one knows both velocity distributions

and the potential distribution in the sheath.

These two properties of the sheath are, of course, intimately inter-

related. In principle, therefore, the problem of deriving the volt-

ampere relations of an electrostatic plasma probe becomes one of a

simultaneous self-consistent solution of the Poisson and Vlasov equations

and to give the potential and velocity distributions, subject to appropri-

ate boundary conditions in the plasma and at the probe surface. The

collected current is then obtained from the current density at the col-

lector surface which can be calculated from the electron and ion velocity

distributions at the probe radius.

The self-consistent approach to the problem is very complicated,

besides being usually obtained for a relatively narrow range of bounda:ry

conditions° Consequently, for a physically meaningful, tractable, and

i



reasonable widely useful solution, certain simplifying assumptions be-

comenecessary.

This paper will present certain such assumptions, and comparesome

2
of the results with those obtained by Laframboise who used a numerical

approach. But before going into the details of our assumptions, we will

give a review of the relationship of our work to the most important ex-

isting literature on electrostatic probetheory.

For the past several decades, a considerable amount of effort has

been devoted to plasma research by meansof electrostatic probes. The

1
most important contributions are those by Mott-Smith and Langmuir,

4
Langmuir and Compton, 3 Bernstein and Rabinowitz, and Gurevitch. 5 The

first unified treatment of electrostatic probe theory as a whole, was

6
that by Hok, in a report which has been a valuable resource in much of

the work on rocket investigation of the ionosphere by The University of

Michigan. Hok discusses the concept of a "potential well" or transition

region, important to bipolar electrostatic probes°

1
The classic works of Mott-Smith and Langmuir and of Langmuir and

Compton, have been extensively used in laboratory plasma and ionosphere

research, and for this reason part of this paper is devoted to giving a

criticial review of certain aspects of their theory, particularly in

regard to details of their assumed sheath model and its physical signifi-

canceo Our early discussion of the "Sheath and Sheath Edge" introduces

an examination of the classical theory as to the self-consistency of

the sheath model from the standpoint of potential theory° This is then

2
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extended into a discussion of the continuity of the potential across

the plasma-sheath boundary, and then to a study of some general proper-

ties of potential functions for the infinite sheath model.

The "Orbital Analysis" portion of this study employs throughout the con-

cept of the "effective potential." This is defined so that, by incorporating

the effect of angular momentum, it becomes a function which produces a fic-

titious force field governing the radial motion of the charged particles.

By systematically examining the mathematical properties of the effective po-

tential, the treatment then derives the Langmuir criteria for collection of

particles by the probe and in particular demonstrates that the discontinuity

of the electric field at the sheath edge is a necessary condition for Lang-

muir's theory to hold. Finally the infinite sheath limit in Langmuir's the-

ory is discussed.

A two-variable, separable, mathematical form for the maxima of the

effective potential is then introduced which relates in conceptually use-

ful ways to the "admissible space" (Langmuir's term). The admissible

space is defined by the limits of integration employed in obtaining the

probe volt-ampere characteristic. This separable expression is then used

to investigate the volt-ampere characteristics for a general inverse-

power-law potential function.

The underlying conceptual basis of the orbital analysis is similar

to that used by Bernstein and Rabinowitz, 4 and Gurevitch, 5 in that it

neglects collisions in the sheath, and provides a framework for determi-



ning current collection by treating the whole region from the collector

surface to the undisturbed plasma by meansof probability distribution

functions.

Following the orbital analysis, the probe volt-ampere relations

are derived in analytic form, for cylindrical and spherical probe geo-

metries. Amongthe assumptions that the whole procedure employs in

arriving at the volt ampererelationships, the following two are es-

pecially basic:

(a) The probability distribution of the particles is Maxwellian

in the undisturbed plasma.

(b) It is reasonable to approximate a part or the whole of the

potential distribution by a suitable inverse power law potential.

To check the feasibility and utility of our second assumption, we will

2
compare our volt-ampere characteristics with those obtained by Laframboise.

The treatment of Bernstein and Rsbinowitz 4 is restricted to monoenergetic

distributions and to probes of large radius. Gurevitch 5 and Laframboise2

have extended the theory to Maxwell-Boltzmann distributions and to probes

of arbitrary radius: but only Laframboise had carried out the calculations

of the volt-ampere characteristics by solving the whole problem, including

the effects due to space charge, in a numerically self-consistent way°

His results are, therefore, a logical source for the comparison°

To summarizethe purposes of this study, we shall attempt to:

(a) Give a critical review of the classical probe theory of Mott-

Smith and Langmuir, examining their sheath model in detail,

I
I
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especially in regard to discontinuities of the field at the

plasma-sheath boundary.

(b) Review the properties of approximations to the potential

function. Then, by means of a suitable inverse-power-law

potential function, derive the probe volt-ampere relations

in analytic form, and compare the results with those obtained

numerically by Laframboise.

The first phase of the analysis will deal with a few classical defi-

nitions in electrostatic probe theory and their employment in dealing

with certain rather general aspects of sheath potential distributions

and of the merging of the sheath into the undisturbed plasma.

5



II. THE POTENTIAL INSIDE THE SHEATH AND ITS CONTINUITY

AT THE PLASMA-SHEATH BOUNDARY

2. i THE SHEATH RADIUS AND "SHEATH EDGES"

Mott-Smith and Langmuir define the sheath and the sheath edge

in the following way.

Let r be the radius of the probe (cylindrical or spherical) and
C

r s that of the sheath° Further let @(r)/q be the electric potential

of a particle of charge q at a radius r in the field of an accelerating

probe, ¢(rc)/q = @c/q the electric potential at the probe and let ¢(rs)/q =

Cs/q = 0 be the plasma potential. We now quote Mott-Smith and Langmuir, I

who define the sheath edge in the following way:

"If we assume any distribution of potential between rs and rc,

we can always find a cylinder (or sphere) of radius r' intermediate

betweenr s and rc such that, for this cylinder (sphere) or any other

of smaller radius, the condition

2
,2 2 r

!_ l > r -r c (i)
-- ,2 2 2

r -r r
c

is satisfied° In other words, such a surface can be taken to be

the edge of the sheath if the distribution for the velocities of

the ions crossing it is known° As far as the equations of orbital

motion determine it, the sheath edge is therefore, simply a surface

on which we know the velocities of the ions and within which the

above condition is satisfied."

I
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Note that this does not compel the potential gradient to be zero at,

or Just beyond_ a "sheath edge" where the velocities are known.

Figure I illustrates the physical meaning of Eq. (1), and the

relationship of a particular "sheath edge" r' = re to the sheath radius

rs. To aid in constructing Fig. l, Eq. (1) has been rearranged into

the following form:

2
r

e _

> r2
e__,l

rc2

: fel  lo (2)

When the sheath edge becomes the sheath radius, r
e

changes to

= rsj the equation

S

---_- --

r %1®oi.CI --
(3)

The definitions of the functions fs and fe are contained in these

equations.

Note in particular that the slope of the factor fs goes to

zero only as r_ _, and that, therefore, the slope of the curve is

nonzero at r=r s. Thus, as illustrated in Fig. i, #(r) must also have

a nonzero slope as it approaches r=r s if it is to remain below fs_c ,

as Eq. (3) requires (for @c < O, i.e., attractive potentials).



0

I

I

: I

! ,
I

(r)

Fig. i.

fs

Illustrates the meaning of Eqs. (i) and (2).

(rs2/r 2 )-i (re2/r2 )-l
= , fe =

(rs 2/re 2)-I (re2/rc2)-i

8
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To obtain Eq. (2) which applies when re < rs it is necessary to

observe only that:

fe < fs, for r < re, if re < rs, because rc < r. (4)

This is illustrated in Fig. i where the feet curve lies everywhere

above the fs@c curve° Here fe and fs are the bracketed factors multi-

plying l¢cl in Eqs. (2) and (3), respectively.

One can note, immediately, the following serious weakness in the

reasoning underlying Eqs. (2) and (3):

In the case where re = rs, Eqo (3), and therefore Eqo (i) with

r' = rs_ describes a model in which there must be a discontinuity

in the potential gradient at r = rs in order to have ¢ = 0 beyond

r s. Such a discontinuity is physically nonrealizable, as dis-

cussed later in detail° This weakness does not appear when r' is

given a value re that is significantly less than rsJ because at

such an re, the potential is still rising, and the gradient zs not

compelled by the boundaries of the model to have any particular

value at and beyond the selected re o

Subsequent sections deal with various methods of probe model analysis

chosen to avoid this weskness.

I
The above quotation from Mott-Smith and Langmuir, as illustrated

by Fig. i and discussions thereof, leads one to conclude that, in

÷ _+ o_ T......._ call "sheath edge" need notgeneral, what Mot_- ......h ........ _.......

coincide with the sheath radius rs at which the potential becomes

9



equal to that of the undisturbed plasma. Furthermore, one concludes

that Mott-Smith and Langmuir considered that it is only inside any "sheath

edge" that the behavior is dominated by the dynamics, thus making the velo-

city distribution different from Maxwellian. Outside the sheath edge,

presumably, the analysis would be that applying to a plasma region in

which there is a gentle potential gradient and a moderate-to-small flux

density of particles. It is therefore reasonable, for analytical purposes,

to place a sheath edge as close to the probe as one may reasonably expect

the velocity distribution to be Maxwellian, with relatively little refer-

ence to where this may lie with respect to the potential distribution.

The right-hand side of the inequality (i), and its equivalent (2),

changes sign when r' < r < rs_ and the inequality is reversed when

l¢(r)l < Ife¢cl for r < rs (see Fig. I). However, these two aspects

are of little concern, since in the region beyond the sheath edge (i.e.,

r > r') one presumably expects to carry out the analysis not in terms

of particle trajectories in a sheath, but rather in terms of particle behav-

ior in a plasma with a gentle inward gradient insufficient to cause signifi-

cant departure of the velocity distribution from that in the undisturbed

plasma (although it may affect the particle density significantly).

Still more generally, in view of the Mott-Smith and Langmuir

distinction between sheath edge and sheath radius, one may well ask

these two questions as to placement of an r' < rs:

(a) Can in any realistic model such a sheath edge surface r exist

and be usefully placed, within which the Mott-Smith and Langmuir

i0

i
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!
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!

!
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condition (i) [also Eq. (2)] is satisfied for all values of

r < r'? It has already been pointed out earlier that potential

distributions can exist that do not satisfy Eqs. (i) and (2) for

all values of r' particularly if r' is close to or at rs? •

(b) If such a surface does exist, what would be the velocity distri-

bution at r=r'? Presumably, with r=r' properly chosen, this

would be a Maxwellian distribution having parameters governed

by the plasma in which the probe is immersed but this merely changes

the question of properly locating a sheath edge r' within the

sheath model.

In the strict sense, answers to these two questions cannot be given prior

to solving the whole problem of the potential distribution in-the self-

consistent way. Supposing that the self-consistent method gave rise to a

potential function which did not satisfy the inequality (I) for the entire

range rc < r < rs, one would then expect the corresponding volt-ampere

characteristics not to coincide with those of Mott-Smith and Langmuir.

It is worth while to note that the Mott-Smith and Langmuir " sheath

edge" may well be interpreted as the boundary between the two regions

which Hok 6 calls, respectively, the sheath and the potential well. The

latter is a transition region exhibiting some slow radial flux of parti-

cles and a gentle potential gradient toward the bipolar probe electrode

system. He envisions this region as having properties similar to those

8,9
in laboratory plasmas exhibiting what Tonks 7 and others have called

ambipolar diffusion. In such plasma regions the ion and electron densi-

ties are very nearly equal, and both are, among themeselves, in thermal

equilibrium, but at different temperatures. Thus, at Hok's boundary be-

ii



tween his sheath and the potential w<_ll, he is able to postulate Maxwellian

velocity distributions of the particles. Yet he need not postulate the

potential to be that of the plasma, nor that there be a zero potential

gradient, nor a discontinuity of the gradient at this boundary. These are

just the attributes of a Mott-Smith and Langmuir sheath edge, distinct

from their sheath radius, and well within the sheath radius.

All contributors, including Mott-Smith and Langmuir, Langmuir and

Compton,3 and Hok,6 give essentially their whole attention to studying

what happens inside what is really a "sheath edge°" Yet it is frequently

unclear just where this sheath edge is relative to the sheath radius, and

still more often the sheath edge is identified with the sheath radius,

with various illogical consequences.

It should be clear that, in general, the defining of a sheath edge

is justified only if it serves to simplify the problem of determining the

volt-ampere relations° The remarkable simplicity of the classical Langmuir

probe theory 1'3 lies precisely in the fact that, by setting r' = rs_ one

is able to bypass the problem of solving for the potential function° Thus,

by Langmuir_s sheath model, we meanthe sheath region described by a

potential function @such that

2 2 2
r s-r r c

I®I_I%1 r2_r 2 r2 - fsl¢cl, for r ! r ss c

I®I I

LO , for r > r s (5)

This is consistent with the inequality (2), if the inequality (4) is

satisfied°

12
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In general, Langmuir's sheath model will be shown not to be

adequate for most plasma probe experiments. Particularly in iono-

spheric measurements, a potential function describing a finite sheath

region and satisfying Eq. (5) cannot exist, unless one assumes the

presence of a charge shell at r = r s, Thus, the curve of _(r) in Fig.

i exhibits a discontinuity in its derivative at r = rs, which could

only exist if there were a shell of surface charge to terminate the

flux due to the potential gradient just within rs. No such shell can

realistically be assumed.

2.2 GENERAL PROBLEM OF THE POTENTIAL DISTRIBUTION IN A FINITE SHEATH,

AND ELECTRIC FIELD CONTINUITY AT THE PLASMA-SHEATH BOUNDARY

Let us define the electric potential function for a finite

sheath by :

i ¢(r) ®(r-rc) e(rs-r )A(r) = (6)

where q is the electric charge per particle, taken to be positive in

this discussion° @(r) is, as heretofore, the potential energy and

e(x) is the unit step function:

e(x) :[1 if x > o
0 if x < 0

t_

(7)

with

de(x)_ _(x) d e(-x) : -_(x) (S)
dx ' d-x

where $(x) is Dirac's delta function. In the above we have considered

13



only the radial variable, because of the symmetry of the field for both

cylindrical and spherical probes. ¢(r) is considered to be a function

that is continuous from r = 0 to r = _.

If Eq. (6) is inserted into Poisson's equation,

?2A - P (9)
e
o

one obta ins

P
= _ $ e(r-rc)e(rs-r ) + $'6(r-rc)O(rs-r )

-¢' 6(rs-r)e(r-r_)l
LJ

(io)

where p is interpreted to include both space-charge density and sur-

face charge density_ p becoming infinite for the latter. The prime

on @ represents the derivative with respect to r.

Now the surface charge density _ on any arbitrary surface or
r

set of surfaces S enclosing a region outside of which the electric

potential gradient is zero is given by

ar = -c o _ V klevaluate d on S. (ii)

Here X is the electric potential function in the region enclosed by S,

and n is the unit normal vector pointing into the region where the

electric field exists. VX is, of course, to be identified with ¢'/q

in Eq. (i0). At r = rc, the unit vector points radially outward, so

that _ = +i, whereas at r = r it points radially inward, so that
s

= -i. Thus Eq. (Ii) becomes
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= -- at r = r c
q £o

_'(%) °r
= --- at r = rs

q £b

(12)

(13)

Hence, the expressions for the surface charge densities Ore and Ors

at r = rc and r = rs respectively, are,

rc q

!

6o¢ c

(_rs -
q

(14-2)

where _c' = _'(r) Jr : rc and Cs' : @'(r)lr = rs. These algebraic signs

are consistent with Fig. i as long as q is positive, for in that case the

@(r) curve in Fig. 1 can equally well represent potential energy per

particle and electric potential. If it represents electric potential, the

surface charge at rc is clearly negative, and at r s positive, from the

construction of the figure.

Now let Pv denote the volume charge density. Then we may write

qPvv2¢ - (15)
E
O

It is now instructive to obtain an overall expression for the charge

density by inserting Eqs. (14-1), (14-2), and (15) into Eq. (i0) to

obtain

P : PV e(r-rc) e(rs-r)-Orc6(r-rc) ®(rs-r)-°rsS(rs-r)e(r-rc) (16)

This is consistent with Eqs. (12) and (13). The delta functions identify

the fact that the charge density becomes infinite for a surface charge.

15



Of course in an integration to obtain total volume charge and total

surface charges, the delta-function terms make finite contributions.

From Eq. (14-1) it is seen that ars = 0 only if @_ = O; i.e., at the

sheath outer bound, the electric field must vanish in addition to the

vanishing of the potential provided by Eq. (6). If only @ vanishes at

rs but not ¢_, then there would exist a surface charge layer of strength

given by Eq. (14-2). In the interior of s plasma, remote from physical

boundaries, the existence of such a shell is obviously unphysical, be-

cause it implies a discontinuity in the electric field° We have already

seen in the previous section that a nonvanishing ¢' at rs, approaching

from the left in Fig. i, is required by the Mott-Smith and Langmuir

model in which r' = r s in Eq. (i). Therefore, as discussed in more

detail later, this nonvanishing of @' at rs is a necessary requirement

in deriving their volt-ampere relations for a finite sheath in which

their "sheath edge" coincides with the sheath outer bound.

In other words, those current expressions will be strictly valid

only under the unrealizable condition in which this sheath edge, placed

at sheath radius, is replaced by a zero-potential conductor of the same

type of geometry as the probe. Presumably Mott-Smith and Langmuir I

were aware of this, but felt their model, even though containing this

element of unrealizability, was an adequate first approximation, and so

it has been for very many years.
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2.3 NEED FOR, AND CONSEQUENCES OF, ABANDONMENT GF THE C0NCEFf QF A

WELL-DEFINED SHEATH BOD-NDARY BY MAKING THE SHEATH RADIUS FORMALLY

INFINITE

The finite sheath model has weaknesses that go considerably be-

yond that of the potential gradient discontinuity at the sheath outer

bound, discussed in the previous section. That particular weakness could

be formally overcome by employing for ¢(r) some simple function that mo-

notonically rises from the probe to sheath radius, but whose slope be-

comes monotonically less steep, finally reaching zero at sheath radius.

Or, one could employ one kind of potential function within a sheath edge,

and another between sheath edge and sheath radius, with potential gradients

forced to be equal at the sheath edge, and that at sheath radius forced

to be zero. But in all such highly artificial potential models, the second

and perhaps higher derivatives would have discontinuities at these bounda-

ries. The second derivative is intimately related to space-charge density,

and it is almost as unrealistic to presume an abrupt discontinuity in

space-charge density at a sheath edge or sheath radius as it is to presume

a discontinuity in the potential gradient.

In any realistic model, not only the potential but also all of its

radial derivatives must be presumed to be continuous through the sheath

into the plasma. This type of continuity demands that the sheath poten-

tial approach the plasma potential asymptotically with increasing radius;

thus, in reality, there can be no well defined sheath radius.

There can of course be described a general range of values of the

radius within which the sheath region with its steep gradients merges

17



into the plasma with its zero gradient. Any plasma will have random

potential variations, and the sheath may be considered to have merged into

the plasma within any range of values of the radius for which the dif-

ference between the sheath potential and that of the undisturbed plasma

is of the order of the random variations in plasma potential. In terms

of experimental systems, this may occur at relatively small distances

from the probe surface.

Mathematically, the merging of the sheath into the plasma is pro-

vided for by letting the sheath radius become infinite (rs_) and requiring

that both the potential and the potential gradient be zero at an infinite

radius. That is, _(r)=O, and _'(r) = 0 at r : rs : _.

Of course this makes the sheath include the two regions discussed

earlier in Section 2.1, namely the steep gradient sheath region proper,

and the gentle gradient plasma-like transition region. It also makes the

sheath include what Hok 6 has called the potential well that exists around

a bipolar pr_e, which represents a reasonably good conceptual approach

to reality.

Thus when we later, for purposes of analysis, extend the sheath

radius to infinity, we must recognize that we are including in the sheath

two types of regions having wholly different properties° In the region

close to the probe, the potential gradient is steep and particles of one

or the other polarity dominate so that space charge has a major effect on

the potential distribution° In the outer or transition region, the positive

ion and electron densities are nearly, but not quite, equal° Particles

18
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of each polarity are in thermal equilibrium, but maybe at different

temperatures. There may exist a close parallel to Tonks' ambipolar

diffusion region. 7'8'9 The potential gradient and flux of particles to

the probe are not zero. The flow of heavy particles (ions) to the probe

may be governed by mobilities affected by collisions, or they might pursue

orbits with negligibly few collisions. Any self-consistent analysis of

the sheath should, to be complete, be equipped to treat both regions, as

for example by using what has been called the " combined plasma-sheath

equation."

2.4 PCTENTIAL FUNCTION MODELS AND CHARGE DENSITIES FOR THE INFINITE

SHEATH

It is clear from earlier discussions, that the general problem of

actually determining the true potential function for a physically realistic

model is very complicated, for in Poisson's Eq. (15) the density function

Pv will, in general, involve $ implicitly. Instead of solving this self-

consistent problem we shall examine the properties of various potential

models and their corresponding volt-ampere characteristics. Each potential

model of course implies a certain charge distribution in the sheath. Our

investigation will be restricted to potential models having the common

property that @ and @' approach zero as r_o An illustrative choice of

a class of potential models, to be discussed below_ is the function

® : ®c\.7} ' (17)

where _c is the potential energy per particle at the probe or collector,
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and C_ is a positive number. For an accelerating potential, (-_c) is

numerically positive. The potential energy gradient is

C_rd_

_, = (_%) c_+l (15)
r

Clearly, both the potential and its gradient vanish as r_.

The exponent C_ has a very simple physical interpretation. Using

Eq. (14-1) in Eq. (18) when r = re, we get

rc (-_rcq)

- _ (__) (19)
c c

in which, for an accelerating potential, both (-_rcq) and (-Co) are

positive quantities. That is, _ is proportional to the ratio of the

collector surface charge density to the collector potential.

In any realistic model, to which Eq. (17) can of course only be

an approximation, one can consider qrc to be the sum of the charge density

on the probe that would exist if it were at the potential ¢c in a space-

charge-free environment, and the induced charge on it due to the space

charge in the sheath region. Before criticizing this concept, let us

state the charge density distribution called for by Eq. (17). By using

it in Eq. (I0), the result is

%(-®c) _(_-_)_
0 -

q r_+2
+ (;rc6(r-rc) , (20)

where _ = 0 for the infinite cylinder and _ = i for the sphere and rc

is given by Eq. (14-1). Equation (20) applies only if (_ > i, as will

be explained below. In that case no third term appears on the right-
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hand side because, as r_, the surface charge density at the sheath

boundary goes to zero faster than the surface area of the sheath boundary

increases.

For the spherical geometry, we use _ = i in Eq. (20). This means

that if _ = i in spherical geometry, Eq. (17) describes a space-charge-

free "sheath" potential (there will generally be substantial space charge

in the sheath of a useful electrostatic probe in a plasma if the probe

potential differs appreciably from the plasma potential ). For the case

where _ = i in spherical geometry, there is a well-defined arc on the

probe surface, found by using Eq. (18) with _ = i in Eq. (14-1). Since

there is no volume space charge, the electric flux that originates at
rc

must terminate at infinite radius. Thus, in this case there would be a

well-defined charge 4_r_arc on the probe, and an equal and opposite charge

at infinite radius where ¢ = O, with @ = @c on the probe. But since this

finite charge is distributed over a spherical shell of infinite radius,

the charge density Orc goes to zero in such a way that the total charge

remains constant, as r_. This also corresponds to the result of Eqo (18)

that with _ = i, lira@' = Oo
r-_o

elements from r = rc to r=_,

Of course in the integration over all volume

Eq. (20) must in principle integrate to

zero; for _ = i in spherical geometry, this can be accomplished only by

adding another term lim Ors6(rs - r) whose contribution to the charge

rs_

integral is equal in magnitude, and opposite in sign, to the total charge

on the spherical probe.

If, for spherical geometry (_=i), we use _ > I in Eqs. (18) and

21



(19) the situation is straightforward, in that the volume integral of

charge is found to equal the area integral of arc; in this case Eq. (20)

includes all electric charges. All electric flux lines then originate

at the probe surface and terminate in the volume charge in the sheath.

The result of the integration is:

_otalVolume :(_ _rc(-®c)Coulombs (21)
Charge

and grc has an equal but negative value.

But if 0 < _ < I for spherical geometry (_ : i), Eq. (20) predicts a

volume charge of the same sign as the surface charge on the probe. Such a

model obviously is physically unrealistic and will, therefore, not be

discussed in this treatment.

Thus, in summary, for spherical geometry, only the range _ > i in

Eq. (17) has any real interest. But the above comments do suggest the

possible utility of a model in which @ is the sum of two terms like Eq.

(17), in one of which _ > I and in the other _ = i_ In fact such a model

probably closely describes the real potential which can be constructed as

the sum of: (a) a contribution due to the space charge and its induced

charge on the probe, and (b) that for a space-charge-free structure. This

two-term potential model will not be dealt with in the present paper.

For the infinite-cylinder geometry we use _ = 0 in Eq. (20). This

means that no expression of the form of Eq. (17) can describe the space-

charge-free potential structure which is, of course, logarithmic in form.

Furthermore, that logarithmic form is uninteresting because it becomes infi-
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nite as r_ (with, however, a zero-value ¢' at r = _)o With the

logarithmic potential used in Poisson's equation, the space-charge

density term in the new Eq. (20) vanishes and, to make the charge

integral balance, we would have to add a term lima 8(rs-r ) whichr_ rs

would make a finite contribution to the charge integral.

Of course, any cylindrical electrostatic probe used in the

ionosphere is not an infinite cylinder. Even if completely isolated

from any other conductor, the field of a charged cylinder of finite

length would, at a sufficiently large radius, become essentially the

same as that for a charged sphere. So there is always, in fact, a

finite space-charge-free potential for such a body carrying a finite

charge. But our infinite-cylinder analysis is not adequate for study-

ing that aspect of the problem°

If, for the infinite cylinder geometry ($ = 0), we use _ > 0 in

Eqso (18 and (19) the volume integral of the charge equals the area

integral of Orc' and Eqo (20) identifies all the charges. The result

of the integration of Eq_ (20) is_

_o_volvo_or_o_o_Y_ _
nit length of cylinder_ =k--_---} _ (-_c), (22)

and arc has an equal, but negative, value_

In summary, we can say that by postulating a relatively simple

potential function (eogo, Eqo (17)), we have obviously no a priori

assurance that the _....._e density implied by .... _ _ _..... a pote ....._. _- phy-

sically realistic. However, it will be shown later that in the range

23



rcihD_ 5 the volt-ampere relations obtained from the potential (17)

for certain values of _ agree very well with those obtained by the self-

consistent calculations of Laframboise. 2 Here _D is the Debye length.

We shall now proceed to the orbit analysis, which includes a

detailed discussion of the behavior of the particles in the sheath

region and the selection of those trajectories, which intersect the

probe.
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III. ORBIT ANALYSIS

3. i THE " EFFECTIVE PCTENTIAL" FOR ACCELERATED TRAJECTORIES

The solution of the equations of motion of a particle approaching

a cylindrical or spherical electrostatic probe (Fig. 2), leads to two

Fig. 2. Radial and tangential velocity components ur and ut for

an approaching charged particle at s distance r from the center

of a cylindrical or spherical electrostatic probe.

constants of motion; viz._ E, the total energy_ and M_ the angular momen-

tum. These are given by:

i (u2r + _, (23): _ m ut2) +

M = mrut, (24)

where m is the mass of the particle and ur and ut are the components

of the particle velocity in the radial and tangential directions,

respectively, at some point in space located a distance r from the

center; ¢ is the potential energy. In the cylindrical geometry, ur

and ut are in a plane perpendicular to the axis of the cylinder (taken

25



along the z axis of a right-handed coordinate system) so that E is the

total energy due to motion in that plane and M is the component of

angular momentum in the z direction. Since the cylinder is considered

to be infinite in length, the velocity component u z in the z direction

remains constant and does not play a role in the classification of the

orbits. In the spherical geometry, ur is the radial component and ut

is the total tangential component of the particle velocity. Thus, in

this case, E is the total energy and M is the total angular momentum.

For both geometries, ¢ is the potential energy at r, relative to a zero

value in the plasma. Since we will be dealing exclusively with the situ-

ation in which the particles are accelerated toward the collector, we will

have @ < 0 and ¢' > 0, where the prime on @ denotes differentiation with

respect to r. The classification of the orbits will now be carried out

without reference to whether the geometry is cylindrical or spherical_

Now let us introduce the concept of the so-called "effective po-

tential energy' by substituting u t from Eqo (24) into Eqo (23) to get

1 (27)
E = _.Ur 2 + @

where

Ce - + ¢" (26)
2mr 2

The effective potential energy ¢ governs the radial motion of the
e

particles. The points, where ur = 0 are the turning points of the orbits°

At these points the effective potential energy @e equals the total energy Eo

26
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In principle, the mathematics describes two such points, the apogees

and the perigees of quasi-elliptical orbits. However, the present physical

model deals only with the perigees, as the apogees would be beyond the

sheath region_ or more generally beyond the region of interest for the

present study.

3.2 RELATIONSHIP OF THE OCCURRENCE OF MAXIMA AND MINIMA OF THE EFFECTIVE

POTENTIAL @e TO THE POTENTIAL STRUCTURE

In order to investigate the qualitative behavior of particle tra-

jectories, we need to examine the behavior of the effective potential Ce

as a function of r for various values of the angluar momentum M. In

particular we must study the extrema of ¢e" On equating to zero the

2
derivative of Ce with respect to r, keeping M constant, in Eq. (26),

we obtain

M2 : mr3¢ ', when ¢'e : 0, 27-i)

that is,

@(r) : M2, when @' = O,e 27-2)

where, for convenience, we use a function @ (r) defined as follows:

#(r) - mr3¢'o (28)

@(r) is a function of the field structure, that has the unique value M2

at values of the radius for which the e_i_±v__^_'- potential _ has a maxi-
e

mum or minimum. Of course, the solution of Eq. (27-2) for r is dependent
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on the form of @(r). If _(r) is a monotonically increasing function

of r, as illustrated in Fig. 3, then for every given value of M2 there

exists one and only one value of r for which Eq. (27-2) is satisfied:

therefore, there exists only one value of r at which @e has an extreme

value, and this extreme value can only be a minimum.

A sufficient condition for _(r) to increase monotonically would

be for @(r) to obey an inverse power law varying less steeply than i/r 2,

for all values of r within the region of interest. Therefore _(r) would

increase monotonically, as shown in Fig. 3, if ¢(r) were to vary as Cl/r.

In oontrast, if ®(r) were to vary as Cl/r3, then _(r) would be

a monotonically decreasing function of r. In such a case there would be

one and only one value of r at which @e(r) would have an extreme value;

but this would be a maximum, resulting in a potential barrier inside the

sheath.

The steepness of the potential gradient @(r) is partly determined

by the geometry of the probe (i_e_, whether it is spherical or cylindri-

cal). In addition the radial dependence of _(r) is governed by the extent

to which space charge is present in the region of interest. The potential

@(r) is, in general, describable as the sum of a space-charge free term

of positive gradient (for example varying as i/r or as in r) and a space-

charge dependent term_ This relates to the discussion below Eqo (20), for

the condition _ = i and _ > i (for spherical geometry), and _ = 0 and

> 0 (for cylindrical). The usual physical model for accelerated parti-

cles is that of a negative potential pro0e drawing a current of positive

28
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Fig. 3. Graph of the function @(r), Eq. (28), for a form of this

function that increases monotonically up to the sheath radius rs

and has the value @s at rs. An illustrative value of M2 is shown

corresponding to a trajectory for which the angular momentum is -+M

(determined at entry into the sheath).
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ions through the sheath. For this model, the space-charge density is

positive throughout the sheath. For a potential model that incorporates

a space-charge free potential plus a potential due to space-charge content

the space-charge free potential term by itself gives rise to a monoto-

nically increasing _(r), for either the spherical or the cylindrical

geometry. Thus, departure from such a monotonicity comes only when the

rate of change of the space charge term in _(r) is dominant in a region

where this rate of change is negative. As discussed later in connection

with Fig. 15, wherever the space-charge density locally declines as i/r n

with n<4, it contributes to the monotonic increase of the function _(r).

But if _(r) will increase monotonically only because of the dominance of

the space-charge free term over that due to space charge, in the range

of radii of interest.

Thus it appears that a sufficient, but not always necessary, con-

dition for _(r) to increase monotonically is an adequate domination of

the space-charge free effect on the potential distribution over the space-

charge effects.

3.3 PROPERTIES OF THE EFFECTIVE POTENTIAL OF LANGMUIR' S FINITE SHEATH

MODEL; THE " ADMISSIBLE SPACE' DIAGRAM FOR PARTICLES REACHING THE

PROBE

We will first examine @ in the light of Langmuir's finite sheath
e

model, that is

¢(r) when r < rs;
®(r) : - (29)

I0 when r > rs;

3O
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with _ satisfying the inequality (3) for rc < r < rs, where rc and rs are

the radius of the probe and the radius of the sheath, respectively. An il-

lustrative plot of _(r) is shown in Fig. 3. We will show that Langmuir's

expression for the accelerated current to the probe, for either cylindrical

or spherical geometry, can be derived only when it is assumed that

Lime' (r) / O,
r ÷r s (30)

that is, if it is assumed that the potential gradient does not vanish

as r approaches rs from within the sheath.

Let @s denote the value of @ (r) as r+rs. Then, for M2>@s, there

exist no solutions of Eqs. (27-i) and (27-2) in the range r < r s. In

the range 0 !_! #s' one value of r is obtained for each given M2 from

Eq. (27-2), and at this value of r, Ce has a minimum. At r = rs, the

value of Ce is, from Eq. (26) given by

2

(31)
*e(rs) - 2

2mr s

because @ is defined to be zero at and beyond r = rs. This expression

tells us that, for nonzero M2, ¢e(rs) is always positive. The derivative

of Ce at r s is

where _S = _(rs)"

of this is :

%(rs> _ 1 (_s__) (32)
mrs 3

It will be recalled from Eq. (28) that the meaning
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mrs_

From Eq. (32) it is clear that from @e(rs) > 0 follows

(33)

< *s, (34-)

whereas for other values of M2, @$(rs) S 0. Plots of @e(r) are shown

in Fig. 4. Now, there exists a value of _ = Ms 2 such that Ce(rc) =

9e(rs). For any potential which satisfies the boundary condition @(rs) =

0, Eq. (26) can be used to show that

2mrs2rc 2

Ms2 - (-_c)" (35-1)

rs 2 - rc2

Note that for a very large sheath, when rs2>> rc2 , this reduces to:

Ms2 = 2mrc 2 (_@c) (35-2)

In reference to Fig. 4, it is seen from Eq. (26) that the M2

curve describes equally well:

(a)

(b)

= 0

The potential distribution in the sheath:

The energy of a oarticle that is wholly radially directed and

has zero velocity at r = rs; such a particle falls freely from

rest at r = r into the probe; it must begin this fall, because
s

in the Langmuir model now being described, ¢_ (r) is positive at

r = rs .

In accordance with the discussion following Eqs. (27) and (28) we now

consider a potential that is qualitatively like the M2 = 0 curve in Fig.

32
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Fig. 4. Plots of the effective potential energy @e(r), for various
values of M2. M2s is defined as the value of M2 for which ¢e is the

same at the probe surface as at the sheath radius. Cs is the value
of M2 for which the minimum in Ce occurs at sheath radius (see Fig.

3).
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4 and has a monotonically increasing _ function as shown in Fig. 3. Then

each effective potential @e(r) has one and only one minimum in the range

r < r as shown in Fig. 4. If M2 is nonzero but very small, the minimum
-- S

occurs for r < rc, and so has no physical significance for the present

study. As _ increases, the minimum moves across r = rc. We are inter-

ested in two particular values of M2.

One of these is of course M 2 = M2 for which a particle with zero
S _

initial radial velocity grazes the probe at perigee. If M_ < _s < M2'

a particle with zero initial velocity will not start inward, because

' < 0. An illustrative example for such a ¢ curve is shown in Fig. 4.@e

The second unique value of M2 occurs at M2 = _s' for which, from

Eq. (32), the minimum of @e occurs just at r = r s. A particle with this

value of M2 and zero initial radial velocity will not move inward from

r = rs even though @'(rs) is positive, because the gradient ¢_(rs) of the

effective potential is zero at rs and negative for r<r s.

From the above comments it is clear that Ms2! _s' as long as the

potential is such that _(r) increases monotonically as illustrated in

Fig. 2.

The relationship of particle trajectories to effective potentials

of the type shown in Fig. 4 will be discussed with reference to Figs. 5a

and 5b. Figure 5a shows, a typical effective potential Ce(r) for a case

in which M2 < Ms2 and the total energy E is sufficiently large so that

the trajectory will intersect the probe, i.e., a particle along such a
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trajectory will be collected. If _ < Ms 2 the requirement for col-

lection (see Fig. 5a) is that E _ _e(rs) since then also E > Ce(rc) be-

cause of the way in which Ms 2 is defined.

Figure 5b shows, a typical Ce(r) for the case in which M2 > Ms 2,

with the total energy E larger than Ce(rc). Thus the trajectory for

this E and this M will also intersect the probe, and collection will

occur. Note that in this case particles with energy less than Ce(rc)

could exist inside the sheath. But in such a case the perigee (E = Ce)

would be at s larger radius than r c implying that collection would not

occur.

In Fig. 5a (M2 < Ms2) the requirement that _Ur2 cannot be negative,

limits the possible values of E to the range E _ Ce(rs) and since Ce(rs) >

@e(rc) in Fig. 5a, any energy that exceeds Ce(rs) will give rise to a

trajectory reaching the probe. In contrast to this, if _ > Ms2 (Fig.

5b), the particle reaches the probe only if 21-mUr2 > 0 at r = rc which

limits the possible values of E to the range E _ @e(rc)o Therefore, we

can now define a so-called "admissible space." Each particle can be

represented by a point in the (E, M2) space, since both E and M2 are

constants of the motion. Then the admissible space is that subspace of

(E, M2) space which contains the representative points of the collected

particles° Based on the above discussion the admissible space is de-

fined by the following relations:

> _e(rs)_ _ _ M2 2 (36-1)-- 2 if 0< <--Ms
2mr s
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if _ > M 2 (36-2)E__ _e(rs) - 2 + ¢c - s
2mr c

The shaded area in Fig. 6 illustrates this admissible space.

3.4 UTILITY OF THE _-FUNCT!0N IN DETERMINING APPLICABILITY OF THE

LANGMUIR VOLT-AMPERE RELATIONS

The _-function (28) plays a very important role in deriving criteria

for the validity of Langmuir's theory. We have seen that, if _(r) is a

monotonically increasing function of r, then for each given M2, Ce(r) has a

minimum. For a finite sheath each Ce has a minimum provided M2 < Ws, where

Cs = _( rs )"

We wish to show in a slightly different way from the treatment of

Mott-Smith and Langmuir that there indeed exists a limiting potential

function @L (r), with the property that any other potential function that

varies less steeply than @L' for all values of r, will give rise to Lang-

muir's current expressions, while any potential function varying more

steeply than eL will give rise to current expressions different from those

of Langmuiro First, we note that if _ has a maximum (for a given M2_Ms 2)
e

which lies to the left of rs (see Fig. 4), the condition for collecting the

particle corresponding to that M2 will not be determined at rs, but at a

smaller distance than rs. This is contrary to Langmuir's requirement that

all trajectories intersecting the probe must be determined by initial con-

ditions at rs. Hence the class of potential functions which satisfy this

requirement must be such that they produce no maxima in ¢e in the region

rc _ r < r s. As discussed earlier, @e has minima when _(r) has a positive

slope and maxima when it has a negative slope. The necessary condition
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ADMISSIBLE

SPACE ___

EQ. ( 36- I ) EQ. ( :56- 2 )
=m

,(I)

i 2
$

i 2
E= -t-

2mr_

Fig. 6. The shaded area is the "admissible space" in the

(E,M 2) plane for Langmuir's finite sheath model. To the left

of Ms 2 , Eq. (36-1) applies, conditions as illustrated in Fig.

5a. To the right of Ms 2 , Eq. (36-2) applies, conditions as

in Fig. 5b.
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for the applicability of Langmuir' s theory can, therefore, be restated

by saying that the V-function cannot have a negative slope. Therefore,

(r) can, at most, be a constant in this range of r, in order for Lang-

muir's volt-ampere equations to be valid. Thus, by setting _(r) = mC
8'

introducing the potential given in Eq. (6), and employing Eq. (28), we

have

d© L

dr
s (r-r c) e (_s-r) + ®T,b (r-r c) s (rs-r)

-®T,S(rs-_) s (r-rc) Ca
- r3 (37)

Upon integrating this, we get

eL(r) + @c = Cb
C a

2r 2

On employing the boundary conditions

@L(r) = @ at rC = re'

eL(r) = 0 at r = r ,s

we Obtain

and therefore

C

Cb a _ 2¢c,

2rc2

C

Cb a - _c'

2rs 2

C a

2(-@ ) r 2r 2
c s c

rs 2 - re 2
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C

Cb = a 2(_®c).2
2r c

(41-2)

Now inserting these values of C a and Cb into Eq. (38) we get

r 2-r2 r 2

%(r) = ® s c e (rs-r).
c r2

rs2 -rc 2

(42)

Equation (42) defines the desired limiting potential function. It is

seen to be of the same form as the potential defined by Eq. (5) which

had been employed in an earlier section to identify Langmuir' s sheath

model, eL is graphically represented by the fs._c curve in Fig. i.

The corresponding *(r) is obtained by using the radial derivative of

Eq. (42) for ¢' in Eq. (28), which yields

2
2mr s

_(r) = (-_c) 2 e(rs-r) (43)
rs

-i
2

rc

As shown in Fig. 7, this is a horizontal straight line for r _ rs where

it has a step function drop to zero.

The conclusion is that for a finite sheath radius and given boundary

value @'(rs) any monotonically increasing function _(r) (corresponding to

some potential function) which lies in the rectangle, illustrated in Fig.

7, will give rise to Langmuir's volt-ampere relations. The dashed curves

in the figure represent two such possible *(r) functions.

For the infinite-sheath case (rs_) the right-hand side of Eq. (42)

reduces to the inverse square law. Thus for an infinite sheath the limiting

potential function (corresponding to the limit of the range for the orbital-

motion-limited mode of collection)is simply

4O
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_(r)

/
/

/

/
/

/
/

0 rc --r-_- rs

_(r) FOR (_L

Fig. 7. Graph of the singular C-function (43) corresponding to

the Eq. (42) form of eL, which is the limiting form for validity

of the volt-ampere equations of the Langmuir finite sheath model.

eL is the fs-¢ c curve in Fig. i, for r < rs, and of course eL = 0

for r > rs.
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= ®c (44)

3.5 DEPENDENCE OF THE MOOT-SMITH AND LANGMUIR CURRENT-COLLeCTION

EQUATIONS ON THE PRESENCE OF A DISCONTINUITY IN THE POTENTIAL

GRADIENT AT THE SHEATH EDGE

When one employs the domain of integration given by Eqs. (36-1) and

(36-2) as illustrated by Fig. 6, the resulting expressions for the acceler-

ated currents to the cylindrical and the spherical probes are the ones ob-

tained by Mott-Smith and Langmuir I (see the Appendix for the derivations).

It is important to note here that it was necessary to assume a discontinuity

in @' across rs (indicated at r = rs by the M2 = 0 curve of Fig. 4) in order

to obtain these current expressions. If we were now to assume that _ has

a continuous derivative at rs, and in fact that Lira @' = 0 from the left
r _ r s

and from the right this would amount to requiring that, in the neighborhood

of rs the variation of ¢ be as (r - rs )n, where n > I. This contradicts

the gross-aspect requirement, used by Mott-Smith and Langmuir, that the

variation of @ must approximate that of an inverse power less than 2.

More specifically, if one were to require that ¢' = 0 at r = rs,

this would in turn require that _s=mrs3(d_/dr)r=rs --O. For a finite

r , this is wholly inconsistent with the requirement illustrated by Fig.
s

7 that _(r) be a monotonically increasing function of r for rc __ r < rs.

Therefore, as will be seen later, the current expressions obtained by

using ¢' = 0 at r = rs a_e quite different from those of Mott-Smith and

La ngmuir.

One may also note that in the finite sheath model, with Lim
r+r s

¢'_ O, a slight error in the estimation of rs can contribute a sig-
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nificant error in the current calculation. This is so because the slope

of Line (i) in Fig. 6 is inversely proportional to rs2.

3.6 ADMISSIBLE SPACE FOR THE 0RBITAL-MOrION-LIMITED CONDITION IN

THE MOrT-SMITH AND LANGMUIR THEORY

The case, where the sheath radius is large as compared with the probe

radius, is of special interest in many applications. Following Langmuir.

this is referred to as the orbital motion limited case. As r increases,
s

C_t've

the slope of the function E = M2/2mrs 2 (see _ i in Fig. 6) becomes

small and in the limit of infinite sheath radius goes to zero. _(r)

becomes then a monotonically increasing function from r = 0 to r = _.

Consequently, for every given M2, Eqs. (27) are satisfied for some value

of r. In other words, Se(rs) = Se(_) = 0, and $e(r) has a minimum for

every M2; this is illustrated in Fig. 8.

The corresponding admissible space is illustrated in Fig. 9, and

is generated by the following expressions obtained as modifications of

Eqs. (36-1) and (36-2):

O<E< _, if 0i M2 <_Ms2; (_5-I

M 2

E _ _ +¢c; if Ms2 < M2 <_, (45-2
2mr c

_ 171where ir _ in Eq. (35-
s

.... . I

Ms2 = 2mrc2(-@c). (45_ 9

Note that the admissible space illustrated in Fig. 9 governs the Mott-

Smith and Langmuir orbital-motion-limited condition.
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(r)
e

\ \

Total Energy E

/

' T
1/2 m u2 r

1/2 m u 2
r

_ r_.\
\ \_ M2>Ms 2., Eq. (45-2)

M2 : Ms 2

M 2< Ms2; Eq. (45-1)

M 2 : 0

Fig. 8. Plots of the effective potential if rs+_ , giving the Mott-

Smith and Langmuir orbital-motion-limited condition. If M 2 < Ms 2,

any positive E will result in collection, as expressed by Eq.

(45-1), if M 2 > Ms 2, E must equal or exceed Ce(rc) for collection

to occur, as expressed by Eq. (45-2). See Fig. 9, for the cor-

responding admissible space.
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i ADMISSIBLE

i E SPACE

EQ(45-1)

I

I
I

I
I

I
I

0

IC_c

EQ(45-2)

i 2
E-

2mr_

I_ = 2Mr¢ 2 (-(_,:)

I
I

I

Fig. 9. "Admissible space" diagram, for the orbital-motion-limited

condition, occurring for the Mott-Smith and Langmuir model when

rs_. The two shaded regions correspond respectively to the Fig.

8, curves for M 2 < Ms 2, as in Eq. (45-1), and for M 2 > Ms 2, as in

Eq. (45-2).

45



3.7 A CLASS OF POTENTIAL FUNCTIONS, GIVING RISE TO BOTH A MAXIMUM AND

A MINIMUM IN THE EFFECTIVE POTENTIAL

Next, we shall examine the effective potential _D (r) for a class of

potential functions with the following properties: The associated V-function

increases montonically to a certain value of r denoted by ri, where it reaches

a maximum, and then decreases montonically, as shown in Fig. i0. At r = 0,

_(r) = O. Consider for a time the condition rc < ri, and define M.l so that

_(r) = M. 2 at its maximum point r = r i. Thus with this form of _(r) we havei

no solutions of Eq. (27-2) for M > Mi2 , which means that for these larger

values of _ the function Ce(r) monotonically decreases with increasing r,

for all r < _. Also, the curve for _e(r,_i) has an inflexion point at r = r

For M2 < _i' Eq. (27-2) has two solutions corresponding to the values of r

where ¢ has a maximum and a minimum.
e

Let @e*,r*, and ¢* symbolize, respectively, the maximum value of Ce(r),

the radius at wluich it occurs, and the potential at that radius_ all for

some given M . Evidently r* > r i. Thus we may

_e = *2 + @e (46-1)

2mr

Of course r* is the solution of Eq. (27-2) which identifies the radius at

which this maximum occurs: r* is itself a function of M2.

It is clear that in order to find the locus of the maxima of @e one

must first know the form of @. However, instead of restricting ourselves

to a particular form of ¢_ we shall consider a class of potential functions

for which the loci of the maxima of ¢ (r) as a function of M 2, are of the form

46
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Ce* = Kv M2v r* > r i (46-2)

Using the definition (26) of @e we therefore obtain

¢* - M2 +®* = KvM2v (46-3)
e 2mr_-22

¢ * is said to be separable for a given potential @ if it can be written
e

in the form (46-2) such that v and K v are independent of M2. These

parameters depend only on the probe geometry and potential. In Eqs. (46-2)

and (46-3) one must always take M2w )vas (M2 for all values of v, in order

to retain the symmetry Be* must have with respect to the angular momentum

M.

Note particularly that Eqs. (46-2) and (46-3) describe only the be-

havior of Be at the maxima, and do not restrict the location of the minima.

3.8 THE UNIQUE ANGULAR MOMENTUM Mk FOR WHICH THE MAXIMUM VALUE OF

EFFECTIVE PCTENTIAL EQUALS THAT AT THE COLLECTOR SURFACE

We shall now study the relation of the maximum value Be* to the

value @e(rc) of the effective potential at the probe surface for a _-

function of the type illustrated in Fig. i0. Such a study leads to an

evaluation of K v and v for the particular class of potentials identified

by Eqs. (46-2) and (46-3), but also of general interest as regards any

potential function whose associated _-function varies as shown in Fig. i0.

For any particular potential function having two extrema in the

expression for Be(r), the probe radius r c may in principle be less than,

47
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I

0 r[, r -_ II

Fig. i0. Graph of a V-function, displaying a maximum inside the

sheath. In this case the effective potential has: a minimum if

r < ri and M 2 < Mi2; a maximum if r > r i and M 2 < Mi2; and inflec-

tion point if r = r i and M 2 = Mi2; neither maximum nor minimum if

M 2 > Mi 2.
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equal to, or larger than r i. This location of rc provides an important

basis for classification of the dynamic behavior. Of course_ only the

region r > rc is of physical interest, wherever rc may lie relative to ri.

to r that is for r _ ri, there canFor any relationship of rc i' ' c

exist a value of M2, denoted by M2k, such that

Ce(rc,M 2) = Be* (rk,M2) , (47)

i.e., when M2 = M2k, @e at the maximum equals that at the probe surface.

Use of Eqs. (26) and (46-1) gives:

+ ® = + ® (48)
2mrc 2 c 2mrk2 k

This is also expressible as

%k - ¢c

,,21Vik= 2mrc2rkP 2 2 rk _ rc

rk - r c

(49)

Using Eq. (27-1 _k can also be expressed in the following way:

: _rk3®{ (50)

!

where @_ : ¢'(rk)o A relation between rk,¢ k and _k can be obtained

by eliminating Mk2 between Eqs_ (50) and (48)° Useful forms of the

result are

and

r_ r k
2 @k+_ =c _- _k + @k

2r c

(__)

49



rk - rc
-- = _k - _c (52)

These equations apply to values of rc over the whole range r _ r..c< l

For a V-function of the type shown in Fig. i0 let

#k : #(rk)' (53)

of course 9k : M_.

less than Mi2

For the moment let us consider the case where r
c

from the concepts underlying Fig. i0 and Eq. (47), (without requiring

that %e* = KvM2v ) that if rc < ri the function @e(r,M_) will ex-

hibit the following properties in the range r < r < rk:

(a)

(b

c

(d

(e

Thus, in Fig. ii, _k is some value of _(r) that is

< r.. It is clear
I

A maximum at r = rk > r i in accordance with the definition of

Mk2_

a point of inflection at a radius between the two inter-

2 with 9(r),sections of Mk

a minimum at some radius r < ri for which _(r) = _k = Mk2'

a negative slope at r : rc_

¢e(rk, M_) = Ce(rc,M2k).

T

Figure 12b represents this behavior for a collector radius rc.

The case where r > r. is of special interest. An important
c i

aspect of it will be dealt with in the next section.
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Fig. ii. Graph of a V-function for the case of a potential

for which ri < rc.

51



(r)

0

_e (r)

0

(r)

0

C_)C

iN,, I

[- --_--.l_.

-L Probe =

I
0 rc' ri rc

. (I); (ri,Mi2) j

= Sheath _I

I
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I
I

_J
[
I
I
I
I

0 rc'

I

-_- ®e'rc,Mk_'_I
(r k , Mk2 )

I
r i rc r S

r i

I

ri rc

I
----(_e (r , M 2) I

I
M2< Mk2 l

r S

for M 2 --0

(a) For M 2 = Mi 2, %e(r)

has a zero-slope inflex-

ion point at r = ri.

(b) For M 2 = Mk 2, the

maximum ¢*(r k,Mk2 ) occurs

at rk = r c .

(c) The general case,

M 2 < Mk 2, with _ oc-

curring inside the

sheath.

I
I
I
I

II I
Fig. 12. Graphs of Ce(r) showing in each of three cases the maximum

@* at r = r*. Two possible sheath radii are shown, rc > r i and

r_ < ri.
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3-9 PROOF THAT FOR rc > ri THE EFFECTIVE POTENTIAL MAXIMUM CAN EQUAL

THE EFFECTIVE POTENTIAL AT THE PROBE SURFACE ONLY BY OCCURRING AT THE

PROBE SURFACE: i.e., rk = rc if r i .< r c

The title of this section describes an important aspect of the be-

havior of Ce(r) for the conditions existing when rc > r i (see Fig. Ii).

It is intuitively evident that for r i < rc, rk must be equal to rc.

From Eq. (47) rk is the radius at which the maximum _e*(rk,M2) equals the

value @e(rk_M 2) at the probe surface. If the maximum _e*(rk,M2k) were to

occur at a radius greater than rc, then Ce(rc,M_) could equal Ce*(rk,M_)

only if there were to exist s minimum of ¢e(r_M 2) between rc and rk.

But according to the definition of riJ the function Ce(r,M 2) has no minima

in the range r > r i which includes the range r > r c since rc > r i.

Thus clearly rk = rc if rc > ri; that is, the particular maximum

Ce*(rk, M2) occurs at the surface of the probe, for the case ri < r c pre-

sently under discussion. This is indicated in Fig. ii and its signif-

icance and consequences clarified by Fig. 12. For an analytical proof

that rk = r c when r c > r i we examine the identity

rk de

_ = __e dr (54 )@e(rk'_) ¢e(rc'_) rc_ dr

Let us assume that rc / rk. In that case dee/dr is positive in the

range rc ! r < rk and zero at rk, since Ce has a maximum at rk and no

minimum for r > rc (since all the minima are located in the range r < r.
l

and we consider now the case rc > ri). It follows that the integral on

the right-hand side of Eq. (54 ) is positive definite. However, according

to the definition of rk (Eq. (47))the left-hand side of Eq. (54 ) vanishes.

These two conclusions are contradictory. Therefore, the initial as-

sumption that rc _ rk must be wrong, and we conclude that
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: if r. < r . (55)
rk rc_ i c

Consider for a moment the applicability of Eqs. (48) and (52 ) to

Eq. (55). Obviously, Ck = ¢c when rk = rc. Therefore, both Eqs. (48)

and (52) are identically satisfied when rk = rc.

3.i0 EVALUATION OF K v AND v, FOR THE CLASS OF P0_ENTIAL FUNCTIONS

DEFINED BY THE RELATION Ce* = KvM2v

In this section the properties of Ce(r,M 2) will be used to evaluate

K v and v_ first for arbitrary ri and then for the special case ri < r c.

If ri is arbitrary, we can have rk_ rc. By definition of M_ in Eq. (47),

the unique maximum ¢e*(rk,M2k ) has the same value as @e(rc,_k>. If r i > rc,

then rk > r c. This is illustrated in Fig. 12b for a collector surface

with radius r'.
c

Using Eq. (46-3), and its derivative with respect to M2, both

evaluated at M2 = M2k, we can solve for K v and v for arbitrary r i. From

Eqs. (46-3) and (47) we obtain, at r = rc,

¢ e*( rk, M2) : @e( rc,M2k ) -- "_ + _ = K _ M_ I _ " ( 5 6 )

2rare2 c

Solving this for K v gives

@c + M2/2mr c 2
Kv :- (57)

M2kV

In order to obtain an expression for v, we take the derivative of

both sides of Eq. (46-3) with respect to M2 and evaluate it at M = _.

For the left-hand side of Eq. (46-3) we obtain
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_(M 2 ) I_ k _(M 2 ) mr .2

(58)

In carrying out the differentiation we must recall that r* is a function

of M2, and that it becomes rk when M2 = _. We then obtain

/

" 5 k - mr_¢k)---g-I2mr# mr I _ (M'-)M_

(59)

In Eq. (59) we used the notation

_r* rk _r rk

(6o)

Because of Eq. (5 0 ) the parenthesis in the second term on the right'hand

side of Eq. (59) vanishes, so that the slope of Ce*(M 2) at Mk2 is

I

i 2
(61)

Differentiating the right-hand side of Eq. (46-3) we obtain

_(

t<vM2V)t_ = vKvY__
12-2

(62)

On equating Eqs. (61) and (62 we get

= (63)
2 2v

2mr k KvM k

_+_÷,, _ is replaced by '#k' theIf Eq (_v_ is sub ..... ted into Eq. (65) _-_

expression for v becomes
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(64)

which is correct for arbitrary values of ri, i.e., ri -->r . It should
< c

be pointed out that v and K v are by definition independent of M2. There-

fore, the evaluation of Eqs. (61) and (62) for M2=M 2 is merely a matter of

convenience. The expressions for v and K v are valid for all values of M

for which ¢ has a maximum.
e

N_ = _k" This gives

Equation (57) can be rewritten by setting

_c + _k/2mr2

K v = (65)
v

_k

where the exponent v in the denominator is given by Eq. (64). Equations

(64) and (65) are the desired expressions for v and K v for r i _ r . If
< c

r i > rc, then the effective potential @e(r,M_) has both a maximum and a

minimum in the sheath region. In that case the value _k' and thus also

_6_) and (65) , depend on th_ parti-the parameters v and K given by Eqs. I _
v

cular form of the potential function @(r).

If, however, r i<rc, then rk = re, and Eq. (50) can take the form

_k = _®#" Usingthis in Eqs. (64)and (65) one obtainsfor ri < rc

2_ + r _'

c c c (66-1)Kl_ = lJ
!

r _'
c c

v = (66-2)
29 + r @'

c c c

It is clear that for the range of values r i < r c once the potential

energy function @(r) is known, K and v can be found, provided @(r) be-
V
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longs indeed to the class of functions defined by Eq. (46-2) in terms

of the loci of the maxima of the effective potential
e

3.ii THE ADMISSIBLE SPACE FOR THE CONDITION r. > r
I C

Next we examine the "admissible space," in the (E, M2) plane, for

effective potentials satisfying the condition (46-2) and for the case

ri > rc which implies both a maximum and a minimum in @e(r). (See Fig.

12 with probe radius r'.c) From the definition of M2k Eq. (47) it fol-

lows that any inward moving particle of angular momentum MK and energy

E > @e*(rk,M 2) will be able to reach the probe• For M2 < M2, a particle

with energy E > Ce* :(r*'M2) can reach the probe, because then Ce(rc,M 2)

will be lower than the maximum ¢e*(r*,M2). On the other hand, if _ > _k,

2
then Ce(rc,M 2) >¢ *(r*,M 2) as illustrated in Fig. 12 Therefore, in

e '

order for such a particle to be collected, it is not sufficient for its

energy to be larger than the maximum Ce*(r*,M2). Instead the requirement

in this case is E _> Ce(r2,M2). Thus, when ri > rc, the admissible space

is generated by the following relations, illustrated in Fig. 13 (see Fig.

12 with collector radius at r' ):
c

E > _*e = Kv M2v' if 0 _< M2 _< _ (67-1

E _> @e(rc) - + @c' if _ < M2 < _ (67-2
2mr 2

e

3.12 ABANDONMENT OF THE CONCEI_ OF A WELL-DEFINED SHEATH OUTER

BOUND IN FAVOR OF AN I_TINITE SH_._ATH RAD_S

As discussed in the Introduction, and in Chapter III, there are
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ADMISSIBLE

SPACE Z I

EQ ( 67-I ) EQ. (67-2) Ii
I

I

I _M 2
I

i 2

E= 2mr_ -I-- _c

I
I

I
I

i
I

Fig. 13. Admissible space diagram from Eqs. (67-1), (67-2) , for

a @-function of the form i_lustrated in Fig. i0 with ri > rc.
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serious logical inconsistencies in presuming that there is a well-defined

outer bound to the sheath. Realistically not only the potential energy

function but also all of its radial derivatives must be presumed to be

continuous through the sheath into the plasma. Such continuity demands

that the sheath potential approach the plasma potential asymptotically

with increasing radius; thus there can be no well-defined sheath radius.

There exists a range of values of the radius within which the merging

of the sheath into the plasma occurs. Any plasma will exhibit random

potential variations_ and the sheath may be considered to have merged

into the plasma when the difference between the sheath potential and that

of the undisturbed plasma is small relative to the random spatial vari-

ations in plasma potential. In terms of experimental systems, this may

occur at a relatively small distance from the probe surface.

Mathematically the merging of the sheath into the plasma is pro-

vided for by letting the sheath radius become infinite (rs_) and requiring

that both the potential and the potential gradient be zero at infinite

radius. That is, $ = 0 and _' = 0 at r = rs = _.

Of course this makes the sheath include the region some authors have

described as the "potential well, ''6 a region that resembles the plasma in

having very nearly equal electron and ion concentrations, but resembling

the sheath in exhibiting a significant radial potential gradient and a

significant flow of charged particles of one sign or the other or both

toward the probe. The "potential well" concept represents a reasonably

good approximation to reality. It corresponds in general to the concept



of an ambipolsr diffusion envelope around the probe, paralleling in some

degree descriptions by Tonks7 and others8'9 of ambipolar diffusion in

laboratory plasmas. Thus when, for purposes of orbital analysis, we ex-

tend the sheath radius to infinity, we must recognize that we are including

in the sheath two types of regions having wholly different properties.

Any self-consistent analysis of the sheath potential must be handled ac-

cordingly, as for exampleby using what has been called the "combined

plasma-sheath equa.tion, "?'8

In the region close to the probe, particles of one or the other

polarity dominate, so that space charge has a major effect on the po-

I

I

I

I

I

I

I
tential distribution.

In the outer or transition region the positive ion and electron charge

densities are undoubtedly very nearly, equal; particles of each polarity

are themselves in thermal equilibrium, but may be at different temperatures.

The potential gradient and net flux of particles to the probe are not zero.

The flow of the heavy particles (ions) to the probe may either be governed

by a "mobility" affected by collisions, or they might fall essentially

freely without collisions.

3.13 ORBITAL BEHAVIOR AND ADMISSIBLE SPACE FOR AN INVERSE-POWER-LAW

POTENTIAL FUNCTION

In this section the orbital behavior of particles moving in a po-

tential of the form

I

I

I

I

: ckr] (68-1)
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will be discussed. Here C_ is some positive number and @c is negative.

The sheath radius for such a potential is infinite, i.e., @÷0 and ¢' +0

c (68-2)¢' =-(-¢c)_ _ + 1
r

as r_. The gradient is

It is useful also to state the corresponding expression for the space-

charge density, obtained by employing Eq. (68-1) in Poisson's equation.

The results are:

For the infinite cylinder:

_®c_ _2r_ (68-3/
P "_ c°\\q/ r(z+2

For the sphere

= (-__._",)0_(0_o_+2-1)r_ (68-4)
P ¢o q / r

For the sphere the case _ = I corresponds to the space-charge-free

situation; for the infinite cylinder the space-charge-free potential

has a logarithmic va.riagion and so is not included in the family of po-

tential functions defined by Eq. (68-1). This zero-space-charge po-

tential for an infinite cylinder has a zero gradient at infinite radius

like the potentials of the form (68-1), but unlike them it becomes in-

finite at infinite radias.

We note the following aspects of the potentisl (68-1):
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(a) The use of an arbitrarily assumedpotential function cor-

responds to assuming a specific radial distribution of space-

charge density, as in this case described by Eqs. (68-3) and

(68-4). Note that for _ > 2 the space-charge density must

vary at i/r _+2.

(b) If (_> 2 in Eq. (68-1) then _(r) of Eq. (28) is a monotonically

decreasing function of r, because _(r) then has the form:

_rc_
_/(r) = m(-¢ c) _ _ _ (69)

r

As discussed earlier, the locus of the extrema of the effective

potential Ce*(r*) is obtained by solving the equation M2= _(r*).

If _'(r*) > 0 the extremum is a minimum, and if _'(r*) < 0 it is

a maximum. Hence, the effective potentials associated with a po-

tential of the class (68-1) have only maxima if _ > 2. Conse-

quently, if _ > 2, the logic leading up to Eq. (55) applies

and requires that rk = rc; that is, the maximum of the function

Ce(rk,Mk2) must occur at the probe surface, r = r c.

(c) For any non-negative value of _ in the power-law potential (68-1)

the separability condition (46-2) is always satisfied; this will

shortly be shown for the case _ > 2.

For the moment, the treatment will be restricted to the case _ > 2. Then

rk = r c as noted in (b) above. This situation is illustrated in Fig. 14

for M2 < Mk2, M2 = Mk '2 and M2 > Mk "2 We may then write Eq. (46-3) as

follows:
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*_'* + _* = Kv(m_*3¢'*)v (7o)

where we have substituted mr*3@ ' for M2 from Eq. (27-1).

and (68-2) become at the maximum ¢ *
e

_r_
®'* : (-®c) r.(_ +l)

Now, Eqs. (68-1)

(71-1)

_* : -(-%)(r-4)rc_ (71-2)

Introducing these into Eq. (70) yields the following equation

(z(% _(-%)rc(_ l) : _(-®o)r__r*(2 -_)_+ (72)

As r* is a function of M2, while none of the other quantities depends

on M2, this equation is satisfied only when the exponent of r* is zero.

Therefore we find that

v - (73)
(_ - 2

According to Eq. (46-3) this value of v, together with the cor-

responding value of Kv given below, determines the maximum Be* and its

locus r*, provided that the potential ¢(r) is of the form (68-1). These

maxima have meaning only if r* _> r c. Direct evaluation of v from Eq. (66-2),

confirms the value for v given by Eq. (73).

The value of Kv corresponding to the v of Eq. (73) is,

K V

(-¢c)(C_ - 2)
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Fig. 14.

power-law potential function @=@c(rc/r)a with e > 2; also shown

is the locus @_(r*).

Graph of the effective potentials, Be(r ) for an inverse-
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For convenience Eq. (73) and an alternative form of Eqo (74) will be

repeated in Eq. (75). These expressions evidently apply to the case

> 2, and to some extent more broadly as discussed in a later section;

they are valid for any M2:

_ _ _.____V
- 2

Kv ..... G-2 ....
,2A___ ) 2,_/(_:2 ) (75-2)

This last equation is precisely of the form that is directly obtainable

from Eq. (66-1). Since Eq. (66-1) applies to the case of a monotonically

decreasing _(r), it is therefore valid in the range _ > 2 (see Eq. (69)).

The fact that Eqs. (75-1) and (75-2) are independent of M2 shows

that the separability condition (46-2) is satisfied in the case of the

inverse-power-law potential (68-1) with _ > 2, as has been claimed above.

Substituting Eq. (71-1) into Eq. (27-1) with r = r* = rk = r c

we obtain the following expression for Mk2:

= _mr#(-®c). (76)

This expression is valid for potentials of the form (68-1) with _ > 2.

It defines the angular momentum Mk for which the corresponding effective

potential Ce has its maximum at the probe radius.

Figure 14 illustrates the locus, Ce*(r*), of the maxima for the

_u_±_± function _ -_ ....._-- _- k_q._, u_ 68-1 The equation for the locus

curve for the given model is obtained from Eq. (46-2) by using Eq. (27-1)
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for M2, with ¢' as in Eq. (68-2), and with Eqs. (75-1) and (75-2) used

for v and K w . The locus equation so obtained is

Ce *(r*) ....(-_c) _ - 2 frc_ (77)
: ½*I

The value of r*/r c as a function of M2 for any locus is obtained by

eliminating @* between Eqs. (27-1) and (68-2), evaluated at r*, and

using Eq. (76). The result is

r* i'_'_I(2_)
;7:\_/J (78)

Combination of the last two equations give: Ce*(r*) as a function of M2;

thus

when Eq. (68-1) applies, and _ > 2.

Equation (78) can be rewritten in terms of the function _(r) since

at the maximum of B e by definition M 2 = _(r*). Hence, one obtains,

¢(r*) = _k 1 (80)
(r./rc)C_- 2

This is illustrated by Fig. 15.

Figure 13, with Mk2 given by Eq. (76), represents the admissible

space for the dynamical system based on the inverse power law (68-1) with

> 2, because this system satisfies Eq. (46-2), and Fig. 13 is adequate

for any system that does so.
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Fig. 15. Graphs of @(r) for various values of a in the power-

law-potential Eq. (68-1).
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3.14 DISCUSSION OF POTENTIAL FUNCTIONS DIFFERENT FROM ANY INVERSE

POWER LAW, BUT WITH SEPARABLE LOCUS-OF-MAXIMA EQUATIONS

lllustrstive potential functions different from Eq. (68-1) might

be postulated that would satisfy Eq. (46-2) or some equally useful separa-

bility condition, and at the same time have one or more of the following

properties not possessed by Eq. (68-1). Thus such functions might con-

ceivably

(a) be of forms giving the curve of _(r) both increasing and de-

creasing portions as illustrated in Fig. i0, thus permitting

minima as well as maxima of @e' with the locus of the maxima

obeying Eq. (46-2) or some equally separable function.

(b) be of forms that permit the model to have a finite sheath

radius, with both @(rs) = 0 and _' (rs) = 0.

The model outlined in (b) has the weakness that it permits the

second_ third, and higher derivatives of ¢ to be discontinuous at the

sheath edge. It is intuitively reasonable to expect the true model to

exhibit continuity in all derivatives of the potential at all values of r.

One of the merits of Eq. (68-1) is that, by abandoning the concept of a

finite sheath radius, it does retain continuity of all derivatives of

for all values of the radius.

However, it is certain that the actual potential variation is much

more complex than Eq. (68-1), and that the loci of the maxima of the

effective potential do not obey Eq. (46-2), nor any similarly separable

function. Nature is not that kind to us. Yet one learns a great deal by

studying the model (68-1) for _ > 2, which satisfies the separability

68
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property (46-2) and pushes rs out to infinity.

Undoubtedly one useful potential model would be the sum of two po-

tentials, one corresponding to the space-charge-free potential variation,

the other describing the potential due to the existing space-charge density,

whatever it may be. For spherical geometry this would employ c_ = i in Eq.

(68-1) to describe the space-charge-free behavior with some other function

describing the effect of the space charge. This second term would be of

opposite sign to the first, because the charge causing it would be of opposite

sign to that on the surface of the probe. For the cylindrical geometry, the

space-charge-free term would have the form ¢ = ¢c (in r/r c + I), which is

obviously not of the form (68-1).

3-15 ADMISSIBLE SPACES FOR ARBITRARY POSITIVE VAI]JES OF THE EXPONENT

IN THE. INVERSE-POWER-LAW POTENTIAL (68-1)

It is desirable to discuss the properties of a model that uses the

potential function (68-1) with arbitrary positive _. Negative values of

are excluded because the purpose of introducing the potential function

@ = Ce(rc/r) _ was to set up a model having an infinite sheath radius, i.e.,

to provide an asymptotic approach to ¢ = 0 as r ÷ _.

If we plot w vs. _ from Eqo (75-1) as is done in Fig° 16, we get a

singularity at _ = 2, and we find that v + I as _ + _o Only non-negative

values of w are of interest because Ce* in Eqs. (46-2).and (46-3) is

identified with the maxima of @e(r). In any realistic model the maximum

value of the effective potential must of necessity be an increasing

function of the angular momentum. This is a direct consequence of the

definition of the effective potential Eq. (26). We note that for an

arbitrary potential _(r) the effective potential _e(r) increases with
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Fig. 16. Graph of _ versus _ as given by Eq. (75-1) in the

case of the power-law-potential given by Eq. (68-1).
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M2 for fixed values of r. Therefore the Ce(r) curves for different values

of the parameter M2 (e.g., Fig. 4) cannot cross one another, and it follows

that the maximum value @e*(rl*,Ml 2) must exceed the maximum value Ce*(r2*,M22)

if MI 2 > M22, i.e._ @e*(r*,M 2) is an increasing function of M2, and therefore

negative values of v have to be ruled out.

According to Eq. (73) _ must be larger than 2 to assure positive values

of v. From Eq. (69)_ furthermore it can be seen that _ is a monotonically

increasing function of r if _ < 2, and_ as has been explained earlier, in

that case the effective potential @e has no maxima, but only minima. Since

the parameters v and K have been defined in connection with the maxima of
v

@e_ it follows that the separability property (46-2) is satisfied by in-

verse power potentials of the form (68-1) only if _ > 2.

Attention is next given to the special case _ = 2. In that case

w is not defined by Eq. (73). In fact, the effective potential becomes

then

@e(r ) =S,.__2m_ + _cr2c_ Ir2 (81)

which has no extrema. Since this treatment is concerned with attractive

potentials (i.e., ¢c < 0), the effective potential vanishes for all values

of r if

M2 : -2mrc2@c . (82)

This value of M2 is easily seen to be the value of Mk2 for C_ = 2 (see

Eq. (76)). Figure 17 shows a set of curves of @e(r) with _ = 2. It

should also be noted that the corresponding V-function is a constant_ i.e.,
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Fig. 17. Graphical representation of Ce when _ = 2 in the poten-

tial (68-1). These second-degree hyperbolas represent Eq. (81).
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: -2mrc2¢ c. (83)

Hence, there exists only one unique value of M2 for which M 2 = @, the

value given by Eqs. (82) and (83). Obviously this does not represent an

extremum of the effective potential. The first derivative of ¢ vanishes
e

for this particular value of M2 for all values of r simply because Ce it-

self is constant.

It has been discussed in Section 3.4 that any potential with a non-

decreasing @-function satisfies the conditions for applicability of Lang-

muir's equations. This also includes the case of constant _. In particular

it has been shown that the inverse square potential is the orbital-motion-

limited case for the set of potentials having constant @ functions. There-

fore, the admissible space for potentials of the form (68-1)with _ = 2 is

given by Eqs. (45-1) and (45-2) .

Considering next the case 0 < _ < 2 we note that the _-function is now

monotonically increasing as illustrated in Fig. 15. The effective potentials

corresponding to this range of _ have minima, as shown in Fig° 8. This leads

again to the admissible space described by Eqs. (45-1) and (45-2). As has

been explained in Section 2.4, the range _ < I is physically meaningless in

the case of a spherical probe. We conclude therefore that potentials of

the form (68-1) give rise to the orbital-motion-limited current-voltage

characteristics derived by Langmuir, if 0 < _ < 2 in the case of a

cylindrical probe or i !_ ! 2 in the case of a spherical probe.

For very large values of _ the sheath thickness becomes small and

the collection is no longer determined by the orbital motions. In the
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limit _ ÷ _, the potential ¢(r) vanishes for all values r > rc and equals I

_c at the collector surface_ r = rc. Hence_ the potential gradient is I

zero for r > r c and becomes infinite at r = rc. The collected current

should approach the random current in the limit C_ ÷ _. In order to I

verify this statement_ we note first that the maximum _e can be ex- I

pressed by substituting Eq. (76) into Eq. (79) to obtain

- 2 -- M2 _/(_-2) , . I

(1)e*(M2) = (-#c) _ Lmrc2(_(1)c) _ (79-i) I

It is easy to show that

lira ®e'(M2) - M22, for o<M 2<_. (79-2)
C_+_ 2mrc --

From Eq. (78) it follows furthermore that

lim r* : r C

Hence_ since Ce has its maximum value at the collector surface_ the re-

quirement for collection is that E _> @e(rc) for all values of M2_ which

means in view of Eq. (79-2),

E > M2 for 0 < M2 < oo.

-- 2 m_rc-_

I

I

I
I
I

The admissible space defined by this expression is illustrated in Fig. 18.

By integation of Eq. (97) below it can be easily verified that this ad-

missible space leads to the random current as has been claimed above.
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II Fig. 18. Admissible space diagram, from Eq. (83-3), for the in-

finitely thin sheath around an electron accelerating probe de-

scribed by letting _ in the potential function (68-1).
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IV. THE VOLT-AMPERE EQUATIONS

4.1 GENERAL EXPRESSIONS FOR THE CURRENT

In this final chapter the expressions for the current collected by

an accelerating probe will be set up in general form and then integrated

between the limits of integration described by appropriate admissible spaces.

Let f(_) be the velocity distribution of the particles, and _ the ve-

locity vector of a particle at any instant. The flux density Jr of electric

current carried toward the probe by the particles crossing a particular

closed surface at which the velocity distribution is known is given by:

A

Jr = q_d_ _ n f(_) (84)

A

where q is the electric charge carried by each particle and n is the in-

ward-pointing normal unit vector. The integration is to be carried out only

over inward-bound particles and, among them, only those destined to arrive at

the probe. Thus "admissible space" criteria govern the integra.tion limits.

A
n is taken positive when pointing in the direction of the center of the

force field. The closed surface chosen for this integration can be the outer

radius rs of the sheath, or it might be a "sheath edge" surface as intro-

duced earlier in Section 2.1. Because the inward orbital motion involves

loss of radial energy to angular energy, the orbital behavior in the acceler-

ating field causes marked departures of directions of motion from an initial

random distribution. Therefore, the closed surface at which the integra-

tion is to take place should be far enough so that this effect of the probe
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on the velocity distribution is as yet insignificant.

If the known initial velocity distribution is the Maxwell-Boltzmann

distribution function, then for a cylindrical probe Eq. (84) may be written

as :

Jr
Noq

(_c2)5/'2
f f f du z du t du r ur exp Uz +

c 2

(85)

where, as earlier in this paper, Uz, ut, ur are the velocity components

in the axial, tangential, and radial directions, respectively, c = 2_-_/m

the most probable velocity, k is Boltzmann's constant, T the temperature,

and @(r) the potential energy of the particle at the radial distance r.

For a cylinder of infinite length, which is the model used here, the

admissible values of Uz, are from -_ to +2, and uz is independent of ur

and u t. Therefore Eq. (85) may immediately be integrated with respect to

u z and rewritten for the cylinder as

N°q f I du t durur exp -_ (u_ + u_+ _ @ (86)Jr =---2
nc

For a spherical probe we define Ur, u@, u_ to be the components of

along the radial, polar, and azimuthal directions, respectively. Since

the motion of a particle in a centrally symmetric field is planar, the

components u8 and u# may be reduced to one tangential component ut by

introducing polar coordinates as follows:

u@ = ut cos Y (87-1)
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u_ : ut sin )' (87-2)

where 7 is the angle between the plane of motion and the plane containing

ue and the polar axis. With this change of va.riables Eq. (84) may be

written for the sphere as

J
r

Noq

(_c2)3/2
f f f du t du r dT ur ut_ exp __L"c-_l(U2r + U2t + 2@ I (88)

where_ once again, the integration is to be carried out over the inward-

bound particles and with limits established by admissible space criteria.

Since all planes of motion are equivalent we integrate Eq. (88) with respect

to 7 from 0 to 2_ and write for the sphere

u

2Noq _- 2 ®)i (89)
Jr - _ UrUtf_ du t ut dUr Ur exp i-I,2 (u_ + u2r +

c
,_.__

We may now transform the variables of integration of both Eq. (86)

and Eq. (89) from the velocity space (Ur, ut) to (M,E) space, as follows:

i
E : _ m(ut2+ Ur2) + @ (90-i)

M : mru t. (90-2)

The second of these equations can be used to eliminate ut2 from the first

resulting in explicit equations for the velocities in terms of M and E,

Ur2 _ M2 + 2--(E - @) (91-1)
m2r m

ut : --.M (9_-2)
mr

The t_ansformation of the (du t dUr) area element in (Ur, ut) space to the
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(dE dM) area element in (M, E) space takes the form

_(Ur,U t )
du r dut - dE dM. (92)

_(_,H)

By the use of Eqs. (91-1) and (91-2) the Jacobian I0 is found to be

3(Ur,Ut) 1

_(E,M) m2rur

(93)

Therefore,

i
dur du t = -_ dE dM (94)

m ru r

The variable r in Eqs.(90), (91), (93), and (94) is of course the radius

of the surface at which the velocity distribution is known. But the cur-

rent density is that at the probe surface, denoted by Jc. The two cur-

rent densities are related by the equations

r (cylindrical geometry) (95-1)
Jc : Jr r-_

r2
Jc = Jr --2 (spherical geometry) (95-2)

r c

Applying the transformation (91-1), (91-2) to the integrals in Eqs. (86)

and (89) and using the relations (95-1) and (95-2), one obtains the fol-

lowing expressions for the current densities at the probe surface.

For cylindrical geometry:

Jc - Noq &&d_M exp(-_).
c2m2r c

(96-i)

For spherical geometry:
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2Noq
-- _).

J c L i/2c3m3r2] & _ dE dM M exp(- E

(96-2)

The last two equations may jointly be written in the form

E
Jo -- % h5 fM fE d_ dM M5 exp(-_-) (97)

where 5 = 0 for the cylinder, 5 = i for the sphere, and

Jo I= Noq • (98)

h5

26

2mrckT ,

(99)

For 5 = 0 and 5 = i, respectively, h5 reduces to:

i

ho - )#/_
( kT VII2_mr 2

(cylindrical geometry) (iO0-i)

hl
I

mr_(_) 2
(spherical geometry) (100-2)

4.2 INTEGRATION OF THE GENERAL EXPRESSION FOR THE CURRENT

The limits of integration are determined by the assumed potential

model. Various potential models have been discussed in earlier sections.

For example, the admissible space defined by Eqs. (67-1) a.nd (67-2) applies

to effective potentials which have the property (46-2). This property is

quite general and includes the case of effective potentials which have both

a.minimum a.nd a maximum, as has been discussed in Section 3.Ii.

In Eq. (97), we may set M2 = x, and write

8O
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Jc
ha Cfx=M2kfm=_ (_1>/2

Jo _ ax--oE=Kvx"dE dx x exp(-_/kT)

+
x dE dx exp (-E/kT

x=M2 E= 2mr--m_c_c+ _c I
(101 )

The integration with respect to E is straightforward, leading to

ox (
Jc = Jo _ L x=o kT /

+ exp(- dx exp

This can be rearranged to yield the following expression:

(io2)

Jc = Jo dy exp (_yV )

25 LL_v "/ y=o

exp (': _-_)(2mr2kT )_ fy=_o
y=M2/2mrc2kT

(i03-i)

where the variables of integration have been changed by using

y = (Kv/kT)i/Wx in the first integral, and y = x/2mrc2kT in the second

integral. Now let yV = z in the first integral, to convert the expres-

sion into the following:

f Z=KvM k /kT
h_kr kT _+l)/2v 2v,,

Jc " Jo _ 1_]_,,, v-ifz:o d_ _,(_+1)/2_ exp(-_)
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2
y=_k/2mrc kT

This may be expressed as

-i+(8+i)/2 )]dy y exp(-y

(103-2)

Je Jo _MT) (_+l)/2

r \TJ
\-7

+ exp --, _bl

_m_/l

(lO4)

where the incomplete gamma function 7(_,x) is defined as

t=x

y(_,x) = f dt t exp(-t)
t=o

(105-i)

and we recognize that

t---oo

f(_,x) - ] dt t_-I exp(-t) = f(_) 7(_,x) (105-2)
t=x

Equation (104) represents the accelerated-particle current to the

probe, with $ = 0 corresponding to the cylindrical model and _ = i to the

spherical model. The radius of the probe is arbitrary, so that Eq. (104)

applies to a V-function of the general shape shown in Fig. i0, whether

rc > rc, or ri < rc, but satisfying condition (46-2) on the maxima of

@e(r).

However, the case of special interest to us is the one where r. < r
I c

(see Fig. ii), where in the range r > r there exists either no extremum
c

in @ or only a maximum as illustrated in Fig. 14. In that case rk = rce

according to Eq. (55) that is, the maximum value of Se*(r*) equals its

value @e(re) at the probe surface only if the maximum occurs at the probe
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surface. For the class of potential functions, which have the property

(46-2) and for which ri < rc, the coefficients K w and v are given by Eqs.

(66-1) and (66-2), i.e.,

2_ c + rc ¢_
K : (106-1)
V 2mrSc@ _

!

rc@ c
v = (106-2)

!

2@ c + rc_ c

This is the condition for which

M2k = @k = @c = mr3c@c (107)

4.3 COLLECTED CURRENT EXPRESSIONS FOR THE INVERSE-POWER-LAW POTENTIAL

For an inverse-power-law potential function, as given by Eq. (68-1)

we obtained expressions (75-1) and (75-2) for _, and Kv, which can be written

in the following forms:

(lOS-l)v : C_ - 2

_, = (-®c)(_-l) (i08-_)
[°_mr2c(-_c) ]G/_(_-2)

where

= _c = _mr2c(-®c)°

by substituting these expressions for v, Kv, and Mk2 into Eq. (104),Now

we obtain
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- I(_-) (_-2)t--To S+°A, r-;-- ®c'I_)/_._ (_+l) (o_-2)/_ o/_-0/2

('(_+1)(_-2) (_-2) _%))

(109)

Equation (109) represents the accelerated current collected by a probe for

the inverse-power-law potential (68-1). The mode of orbital-limited cur-

rent collection is obtained by setting C_ = 2. Denoting the orbital-motion-

limited current density at the probe surface by Joml, Eq. (109) becomes for

(llo)

the case (:%= 2;

_o ?__(-o_,t<I_ :-o;x_,_+__-o;_q
+ exp<_] k,,,"-'_'- -e-j _]

For 5 = 0 and 5 = i_ corresponding to the cylindrical and spherical geo-

metries respeetively_ Eq. (ii0) takes the familiar forms given by Eq. (A-13)

and Eq. (A-14) in the Appendix.

For _ = _, the right-hand side of Eq. (109) reduces to Jo" Con-

sequently_ in this mode of collection the probe collects the random cur-

rent, as was anticipated in comments in the last paragraph of Section 3.15 .

4.4 CURRENT COLLECTION FOR A POWER-LAW APPROXIMATION TO THE DEBYE PO-

TENTIAL DISTRIBUTION FOR A LARGE SPHERE

As a final example we will consider the Debye potential distribution

for a large spherical probe (kD < r i << rc) , and find a power law which

approximates it. The new notation is as follows:
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@D(r) = The Debye potential function

AD = The Debye length.

Thus

r c //r -rc _'_,
(iii)

By using this potential in Eq. (106) we get

v : %+% (112)

re-) _

We are now looking for a particular potential of the form (68-1) which

has the property that the exponent v, given by Eq. (108-1) is equal to

the expression of v (112) for a Debye potential. The two values of v are

equal if

rc+A D
_ (i13)

Henee_ the desired potential is

= _c '_ ( 114 )

It can be shown that for values of r close to rc the potential (114) is

approximately equal to the Debye potential if rc/A D >> i In order to show

<< i. Then Eq. (114) can be rewritten+ 5r with 5r/r ethis we let r = rc

in the following form,

= @c
rc/r

rc/%
(rlrc)
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rc/r

@ = ¢c /_.5_\rc/k D (116)

k rc]

rcf__r_ 5r
® _ ®o W--=- ir_ << i\"DI rc

re {_5"_ 5r << i. (117)

-- exp_AD! if _DDq_ ---_--@c r

Hence, the volt-ampere relation for a spherical probe of large radius for

the case of a Debye potential can be obtained by using the expression (113)

for _ and 5 = i in Eq. (109). The result is

Jc : Jo ) 7

(__c _×_exp kT i
+

__j (118)

where X m rc/k D.

4.5 DISCUSSION OF THE VOLT-AMPERE RELATIONS

The accelerated current density at the collector (cylindrical or

spherical), for a power law potential_ is given by Eq. (109). For the

cylindrical geometry we set 5 = 0 and obtain,

_/_ (_-2)_+2)/2_ _-2_ (_-2)_Jco = Jo _ 7k_ _ ' -¢oe

---%

where @oc = @c/kT < 0 is the dimensionless potential energy st the col-

lector surface.

If we plot Jco/Jo against (-$oc) for fixed values of _ we would an-

(109-1)
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ticipate that for increasing _ the ratio Jco/Jo would uniformly decrease

i.e., if _i >_2 then Jeo(_l) < Jco(_2) for all values of (-@oe). In other

words_ the larger the values of_ the smaller is the current density at

the probe. The plot of _o/J0 against (-¢oe) for various values of c_ is shown

in Fig. 19. The first curve for _ = 2 is the oribital-motion-limited form

of Eq. (109-1). The rest of the curves are for higher values of _ as shown.

One observes that for _ > 2 the saturation region is attained progressively

faster. The decreasing character of Jco/Jo for increasing _ is illustrated

in Fig. 20. These curves also show that in the range 0 < _ < 2 the current
i

is independent of _, which is not surprising since Langmuir' s theory applies

in this range and his volt-ampere characteristics are independent of the de-

tailed structure of the potential. Table I lists the values of Jco/Jo for

different _ and @oc calculated from Eq.

For the spherical probe (6 = i) Eq.

Jcl

/-®o_2/_
-- Jo\-7-) (_-2)2/°_7

i09-i).

109) reduces to,

, ,),'o_-2 (c_-2og _ -@oc

( 109-2 )

where $oc again is the dimensionless potential energy (@e/kT) at the col-

lector surface, and for attracting potential it is negative.

Figure 21 illustrates the behavior of Jcl/Jo as a function of (-@oc)

(Eq.(109-2)) for various values of _. For any fixed value of (-@oc) the

decreasing character of Jcl/Jo for increasing _ is evident. Figure 22

illustrates that behavior for some representative values of _¢oc ). These

curves have been drawn for the range _ > I since the case _ < i is
m

physically meaningless as has been discussed in Section 2.4. Table II
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lists the values of Jcl/Jo for different values of (_ and ¢oc calculated

from Eq. (109-2).

In the volt-ampere characteristics of cylindrical and spherical probes

(Figs. 19 and 21) the values of the parameter c_ were considered independent

of @oc and X, where X is the ratio of the probe radius r c to the Debye

length kD. If one represents the potential distribution in the sheath by

an inverse power law of the form (68-i)_ the exponent c_ will of course

depend on the probe potential @oc and the parameter _. This is merely

a consequence of the fact that the rate at which the potential disturbance

decreases radially (which is controlled by _) depends on the probe po-

tential and on the electron temperature and density. In a realistic sheath

model, as pointed out earlier, the potential function must be determined

in a self-consistent way together with the charge density. In the fol-

lowing section the relation between _ @oc, and X_ will be obtained nu-

merically by comparison of Eqs. (109-1) and (109-2) with the volt-ampere

relations obtained by a self-consistent treatment of the problem.

4.6 COMPARISON WITH THE RESULTS OF A SELF-CONSISTENT ANALYSIS

2
Using numerical methods Laframboise has recently carried out a self-

consistent field analysis of the potential and volt-ampere current rela-

tions for cylindrical and spherical probes. Tables III and IV contain his

calculated values for the respective probes and Figs. 23 and 24 show the

corresponding characteristic curves. For the determination of (_ as a

function of ¢oc and X we took the values of the current from Tables III

and IV, inserted them in Eqs. (109-1) and (109-2) respectively, and in-
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verted these expressions numerically to obtain the corresponding values

of c_ for given values of _oc and X. Figure 25 illustrates c_ for the

cylindrical probe as a function of (-_oc) for various values of X and

for the temperature ratio Tion/Telec = i. Figure 26 shows C_, for the

cylindrical probe, as a function of X for various values of (-@oc)"

Table V contains these calculated values.

Similarly_ for the spherical probe_ Fig. 27 illustrates c_ as a

function of (-@oc) for various values of X, and Fig. 28 shows c_ as a

function of X for various values of (-_oc). The temperature ratio for all

cases is unity. Table VI contains these calculated values.

In order for an inverse-power-law potential to be realistic_ the

exponent _ should not depend on the probe potential @oc" Figures 25 and

27 show that _ is fairly insensitive to changes in the probe potential
oc

for values of X less than about 5_ except in the immediate neighborhood of

the plasma potential. In the range X < 5, J is essentially constant for

('@oc) > 4o For a plasma of 2000°K _ and a value of (-@oc) = 4 the probe

potential is about 0.7 volt. Electron density data are generally obtained

at higher voltages_ where C_ does not change anymore with probe potential.

From Fig. 25 it is seen that _ = 2.8 if X = 5 and @oc -->4. If one compares

the X = 5 curve of Fig. 27 with the _ = 2.8 curve obtained by interpolation

from Fig. 19, one finds that the two curves are practically identical for

all values of @oc(even forl@ocl< 4). For X < 5 the agreement improves of

course.

In the case of cylindrical probes used for ionospheric measurements
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TABLE V

CYLINDRICAL PROBE (5 = 0)

Temperatur e ratio Tion/Telectron = i. Values of (_ as a function of

(-_oc)_ for various values of X = rc/kD, derived from Laframboise's

Table III of volt-ampere characteristics.

X=5 X=IO X=20 X=50 _(:i00
-¢oc

2.00 2.00 2.00 2.000.0 2.00

o.i 2.235

O.3 2.508

O. 6 2. 195 2. 719

i. 0 2.365 2. 696

1.5 2.483 3.203

2.0 2,564 3.359

3. o 2.680 3.559

5.0 2. 774 3. 780

7.5 2. 793 3.860

lo. o 2.809 3.881

15.0 2. 795 3o866

20.0 2.774 3.834

25 .0 2. 754 3.797

2.236

2.892

3 3o4

3 710

4 082

4 349

4 720

5 IO

5 295

5.375

5. 401

5.371

5.323

3.648 4. 070

4.141 4.679

4. 717 5.450

5.281 6. 093

5. 693 6.596

6.299 7.367

7.026 8.382

7.488 9. 071

7.738 9.507

7.964 i0. 001

8.025 10.203

8.028 i0.337

i00
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I

i

I

I
I
I
I

I

I
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I
I
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I
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TABLE VI

SPHeriCaL PROB_ (_ = i)

Temperature ratio Tion/Telectron = i. Values of (_ as a function of

(-¢oe), for various values of X = rc/k D, derived from Laframboise's

Table IV of volt-ampere characteristics.

X:5 X=IO X=2 0 X=50 x=IO0
_oc

O. 0 2. O0 2.00 2. O0 2. O0 2.00

I

I
I

I

I

I

I

I
I

I

I

I

I

I

0. i

0°3
0.6

i.O

1.5

2.0

3.0

5.0

7.5
i0.0

15.o
20.0

_. o

3.397

3.767

3 831

3 9O9

3 956

3 993

4 018

4 OO6

3 968

3 931

3 878

3 829

3 789

4°336 5.242 7. 054

4.644 5.893 7.570

4.893 6. 157 8.053

5.053 6.45l 8.553

5o178 6.72o 9o o31

5.278 6.915 9.422

5.397 7.21o lO.O44

5.459 7.481 io. 773

5.468 7.568 ii. 189

5.431 7.556 11.348

5.340 7.465 11.419

5.243 7.331 11.356

5.172 7.218 11.219

7.956

8o86O

9.5o3

lOoo92

lO.711

11o226

12 177

13 598

14 209

14 648

14 976

15 o23
14 961

i01
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X is usually considerably less than unity so that _ = 2, and Langmuir's

volt-ampere characteristics correctly give the collected current_
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V. CONCLUSION

Experimental data of excellent quality are now being obtained from

electrostatic probes both in the ionosphere and in laboratory plasmas.

The detailed shapes of the measured volt-ampere curves obtained would give

valuable information about plasma properties if the theory of these curves

were better understood. This requires the use of realistic models of the

potential structure in the sheath region. The need for such realistic, yet

mathematically tractable, potential models provided the stimulation for

undertaking this study.

This report illustrates the artificial nature of any probe theory based

on the use of potential functions that exhibit discontinuities of the po-

tential gradient, or of higher radial derivatives of the potential at any

specified sheath radius. Discontinuity of the gradient presumes a surface

charge suspended in space; discontinuity of the second derivative presumes

a step function in space-charge density; neither of these corresponds to

any physical reality. Thus a model might be considered in which the po-

tential and its first and second derivatives are all matched at a "sheath

edg@' surface interior to the outer bound of the sheath. I In this case the

region outside the sheath edge would be a low-space-charge transition

region 6'7'8'9 between the plasma and the high-space-charge steep-gradient

sheath region.

One of the most interesting aspects of the material presented is

the comparison between the results of the self-consistent field analysis

by Laframboise 2 and the results of our calculations based on the inverse-
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power-law potential (68-1)o In particular our results showthat in the

range of parameters of interest in ionospheric applications our probe

characteristics agree very well with those of Laframboiseo

Of course the "infinite" sheath radius should not literally be taken

to be infinite. It meansmerely that the sheath potential approaches the

plasma potential asymptotically. At a range of radius values in which the

difference between the sheath potential and the plasma potential has be-

comesmall relative to the inherent random variations in plasma potential,

one is outside the sheath_ Thus the "infinite radius" of the sheath can

in fact be a very short distance. Oneought to think in terms of some

meanvalue radius_ as one thinks of a time constant of an asymptotically

decaying circuit transient.

In summary_this study emphasizes the need for recognizing that,

to be reasonably in accord with reality_ one must indeed use a sheath

model in which the sheath potential approaches the plasma potential

asymptotically.

It appears from the present work that it is feasible to devlse a

simple potential function model that serves these purposes wello Of

course other equally good or better models maybe found, but the inverse-

power-law function proposed here seemsto provide a good compromisebe-

tween the need for representing reality and the need for mathematical

tractability°
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APPENDIX

DERIVATIONS OF THE MOTT-SMITH AND LANGMUIR EQUATIONS

FOR CURRENT TO CYLINDRICAL OR SPHERICAL PROBES FOR FINITE SHEATH MODELS

This derivation is carried out by using the domain of integration shown

shaded in Fig. 6 of the text_ described as follows in accordance with Eqs.

(36-1) and (36-2) of the text:

> _2' if o <__ <_Ms2 (A-i
2mr s

E>
2

2mr c

-- + ¢c' if Ms 2 < M2 < _ (A-2

where

2mrs2rc2(-¢c)
Ms2 = 2 2 (A-3

(r s - ro )

To obtain the current density Je to a cylindrical or spherical probe for a

sheath of finite radius rs we apply the above Eqso (A-I), (A-2) and (A-3) in

Eqo (107) of the text, with symbolism as therein, and using M2 = }_;; the

result is :

I:Ms2 _,=oo _I)/2 _L)

=o fE_2_r s dE dx exp( kT

X = OO E _ OO

+I I
x : Ms2 E -

x

---_+ ¢
2mr c c

]
dE dx x_'I)/2 exp(- k¥)l

(A-4)

Integration with respect to E gives:

io9



J
C _ 8+1 _ I

hsk_ = Ms2 2

- dx x exp( x 2 )
2 5 o 2mkTrs

fx = _ _2_ x+ exp dx x exp -- (A-5)

s 2m rc

Use of new variables of integration y = x/2mkTrs2 in the first integral, and

y = x/2mkTrc2 in the second converts this to:

_2 5+1-1
hskT -_-

Jc : 25 mkTrs2_5+_-/2 Iy = Ms2/2mkTrs2 dy y exp(-y)
y :o !

+ (2mkTrc 2}5+1)/2 exp(- _) /Y = _

y = M.s2/2mkTrc2
exp( -y)_ (A-6)

Now substitute for h5 from Eq. (109) in the text, and for Ms2 from Eq. (A-3),

and express the integrals in terms of incomplete gamma functions as in Eqso

(115-1) and (115-2), to get

Jo 5+1 -@c rc

Jc = _)L\rc 4 y '--_rs2 -

+ exp _-__c__F__6+l -@c rs2 q

\,_'] k-_ ' kT rs2 - rc2_

(A-7)

For cylindrical geometry 5 : 0. The incomplete gamma functions then

become

2rc2 2_

r s - rcj /

-¢c rc2
t ----

: f kT rs 2 - re 2 dt t -2/2 exp(-t)

t :o

(A-8)
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and

s0.r2- rc rs 2 - rr _-- s =- _ _erfc
(A-9)

Thus the expression for the current collection to the inwardly-accelerating

infinite-cylinder probe may be written as

L
exp erfc c rs

_kT 2\kT/ rs _ rc

For the spherical probe, we obtain by a similar procedure after using

5 = 1 in Eq. (A-7):

Jc = Jo _-_r c 2_exp --rs - rc/3

(A-II

These Eqs. (A-IO) and (A-II) for the current were originally derived by

Mott-Smith and Langmuir using the velocity space domain.

In the orbital-motion-limited mode of collection, rs/r c + _ and Eq.

(A-7) becomes

For the infinite cylinder, 5 = O, we get

Joml = Jo__-- _+ exp <T_-_C)erfc_> 1 (A-13)

For the sphere, 5 = i we get

Joml : Jo <i- _-_c) (A-14)

iii



Equations (A-13) and (A-14) are the well known orbital motion limited volt-

ampere equations of Mott-Smith and Langmuir.
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